Have a personal or library account? Click to login
Frequency Response Based Curve Fitting Approximation of Fractional–Order PID Controllers Cover

Frequency Response Based Curve Fitting Approximation of Fractional–Order PID Controllers

Open Access
|Jul 2019

References

  1. Atherton, D.P., Tan, N. and Yüce, A. (2014). Methods for computing the time response of fractional-order systems, IET Control Theory & Applications9(6): 817–830.10.1049/iet-cta.2014.0354
  2. Balas, G., Chiang, R., Packard, A. and Safonov, M. (2007). Robust Control Toolbox 3: User’ Guide, MathWorks, Natick, MA.
  3. Bingi, K., Ibrahim, R., Karsiti, M.N., Hassan, S.M. and Harindran, V.R. (2018a). A comparative study of 2DOF PID and 2DOF fractional order PID controllers on a class of unstable systems, Archives of Control Sciences28(4): 635–682.
  4. Bingi, K., Ibrahim, R., Karsiti, M.N., Hassan, S.M. and Harindran, V.R. (2018b). Real-time control of pressure plant using 2DOF fractional-order PID controller, Arabian Journal for Science and Engineering44(3): 2091–2102.10.1007/s13369-018-3317-9
  5. Caponetto, R. (2010). Fractional Order Systems: Modeling and Control Applications, World Scientific, Singapore.10.1142/7709
  6. Das, S. (2011). Functional Fractional Calculus, Springer, Berlin/Heidelberg.10.1007/978-3-642-20545-3
  7. de Oliveira Valério, D.P.M. (2005). Fractional Robust System Control, PhD thesis, Universidade Técnica de Lisboa, Lisboa.
  8. Deniz, F.N., Alagoz, B.B., Tan, N. and Atherton, D.P. (2016). An integer order approximation method based on stability boundary locus for fractional order derivative/integrator operators, ISA Transactions62: 154–163.10.1016/j.isatra.2016.01.02026876378
  9. Djouambi, A., Charef, A. and Besançon, A.V. (2007). Optimal approximation, simulation and analog realization of the fundamental fractional order transfer function, International Journal of Applied Mathematics and Computer Science17(4): 455–462, DOI: 10.2478/v10006-007-0037-9.10.2478/v10006-007-0037-9
  10. Du, B., Wei, Y., Liang, S. and Wang, Y. (2017). Rational approximation of fractional order systems by vector fitting method, International Journal of Control, Automation and Systems15(1): 186–195.10.1007/s12555-015-0351-1
  11. Joice Nirmala, R. and Balachandran, K. (2017). The controllability of nonlinear implicit fractional delay dynamical systems, International Journal of Applied Mathematics and Computer Science27(3): 501–513, DOI: 10.1515/amcs-2017-0035.10.1515/amcs-2017-0035
  12. Kaczorek, T. (2018). Decentralized stabilization of fractional positive descriptor continuous-time linear systems, International Journal of Applied Mathematics and Computer Science28(1): 135–140, DOI: 10.2478/amcs-2018-0010.10.2478/amcs-2018-0010
  13. Khanra, M., Pal, J. and Biswas, K. (2011). Rational approximation and analog realization of fractional order differentiator, 2011 International Conference on Process Automation, Control and Computing (PACC), Coimbatore, India, pp. 1–6.10.1109/PACC.2011.5978925
  14. Khanra, M., Pal, J. and Biswas, K. (2013). Rational approximation and analog realization of fractional order transfer function with multiple fractional powered terms, Asian Journal of Control15(3): 723–735.10.1002/asjc.565
  15. Kishore, B., Ibrahim, R., Karsiti, M.N. and Hassan, S.M. (2017). Fractional-order filter design for set-point weighted PID controlled unstable systems, International Journal of Mechanical & Mechatronics Engineering17(5): 173–179.
  16. Kishore, B., Ibrahim, R., Karsiti, M.N. and Hassan, S.M. (2018). Fractional order set-point weighted PID controller for pH neutralization process using accelerated PSO algorithm, Arabian Journal for Science and Engineering43(6): 2687–2701.10.1007/s13369-017-2740-7
  17. Krajewski, W. and Viaro, U. (2011). On the rational approximation of fractional order systems, 16th International Conference on Methods and Models in Automation and Robotics (MMAR), Międzyzdroje, Poland, pp. 132–136.10.1109/MMAR.2011.6031331
  18. Krajewski, W. and Viaro, U. (2014). A method for the integer-order approximation of fractional-order systems, Journal of the Franklin Institute351(1): 555–564.10.1016/j.jfranklin.2013.09.005
  19. Krishna, B. (2011). Studies on fractional order differentiators and integrators: A survey, Signal Processing91(3): 386–426.10.1016/j.sigpro.2010.06.022
  20. Li, Z., Liu, L., Dehghan, S., Chen, Y. and Xue, D. (2017). A review and evaluation of numerical tools for fractional calculus and fractional order controls, International Journal of Control90(6): 1165–1181.10.1080/00207179.2015.1124290
  21. Liang, S., Peng, C., Liao, Z. and Wang, Y. (2014). State space approximation for general fractional order dynamic systems, International Journal of Systems Science45(10): 2203–2212.10.1080/00207721.2013.766773
  22. Meng, L. and Xue, D. (2012). A new approximation algorithm of fractional order system models based optimization, Journal of Dynamic Systems, Measurement, and Control134(4): 044504.10.1115/1.4006072
  23. Merrikh-Bayat, F. (2012). Rules for selecting the parameters of Oustaloup recursive approximation for the simulation of linear feedback systems containing PIλDμ controller, Communications in Nonlinear Science and Numerical Simulation17(4): 1852–1861.10.1016/j.cnsns.2011.08.042
  24. Mitkowski, W. and Oprzedkiewicz, K. (2016). An estimation of accuracy of Charef approximation, in S. Domek and P. Dworak (Eds.), Theoretical Developments and Applications of Non-Integer Order Systems, Springer, Berlin/Heidelberg, pp. 71–80.10.1007/978-3-319-23039-9_6
  25. Monje, C.A., Chen, Y., Vinagre, B.M., Xue, D. and Feliu-Batlle, V. (2010). Fractional-Order Systems and Controls: Fundamentals and Applications, Springer, Berlin/Heidelberg.10.1007/978-1-84996-335-0
  26. Oprzedkiewicz, K. (2014). Approximation method for a fractional order transfer function with zero and pole, Archives of Control Sciences24(4): 447–463.10.2478/acsc-2014-0024
  27. Oustaloup, A., Levron, F., Mathieu, B. and Nanot, F.M. (2000). Frequency-band complex noninteger differentiator: characterization and synthesis, IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications47(1): 25–39.10.1109/81.817385
  28. Pachauri, N., Singh, V. and Rani, A. (2018). Two degrees-of-freedom fractional-order proportional-integral-derivative-based temperature control of fermentation process, Journal of Dynamic Systems, Measurement, and Control140(7): 071006.10.1115/1.4038656
  29. Petráš, I. (2011a). Fractional derivatives, fractional integrals, and fractional differential equations in Matlab, in A. Assi (Ed.), Engineering Education and Research Using MAT-LAB, InTech, London, pp. 239–264.10.5772/19412
  30. Petráš, I. (2011b). Fractional-Order Nonlinear Systems: Modeling, Analysis and Simulation, Springer, Berlin/Heidelberg.10.1007/978-3-642-18101-6
  31. Poinot, T. and Trigeassou, J.-C. (2003). A method for modelling and simulation of fractional systems, Signal processing83(11): 2319–2333.10.1016/S0165-1684(03)00185-3
  32. Shah, P. and Agashe, S. (2016). Review of fractional PID controller, Mechatronics38: 29–41.10.1016/j.mechatronics.2016.06.005
  33. Sheng, H., Chen, Y. and Qiu, T. (2011). Fractional Processes and Fractional-Order Signal Processing: Techniques and Applications, Springer, Berlin/Heidelberg.10.1007/978-1-4471-2233-3
  34. Shi, G. (2016). On the nonconvergence of the vector fitting algorithm, IEEE Transactions on Circuits and Systems II: Express Briefs63(8): 718–722.10.1109/TCSII.2016.2531127
  35. Tepljakov, A., Petlenkov, E. and Belikov, J. (2012). Application of Newton’s method to analog and digital realization of fractional-order controllers, International Journal of Microelectronics and Computer Science2(2): 45–52.
  36. Valério, D., Trujillo, J.J., Rivero, M., Machado, J.T. and Baleanu, D. (2013). Fractional calculus: A survey of useful formulas, The European Physical Journal Special Topics222(8): 1827–1846.10.1140/epjst/e2013-01967-y
  37. Vinagre, B., Podlubny, I., Hernandez, A. and Feliu, V. (2000). Some approximations of fractional order operators used in control theory and applications, Fractional Calculus and Applied Analysis3(3): 231–248.
  38. Wei, Y., Gao, Q., Peng, C. and Wang, Y. (2014a). A rational approximate method to fractional order systems, International Journal of Control, Automation and Systems12(6): 1180–1186.10.1007/s12555-013-0109-6
  39. Wei, Y., Gao, Q., Peng, C. and Wang, Y. (2014b). A rational approximate method to fractional order systems, International Journal of Control, Automation and Systems12(6): 1180–1186.10.1007/s12555-013-0109-6
  40. Xue, D. (2017). Fractional-order Control Systems: Fundamentals and Numerical Implementations, Walter de Gruyter GmbH, Berlin.10.1515/9783110497977
  41. Xue, D., Chen, Y. and Attherton, D.P. (2007). Linear Feedback Control: Analysis and Design with MATLAB, SIAM, Philadelphia, PA.10.1137/1.9780898718621
  42. Xue, D., Zhao, C. and Chen, Y. (2006). A modified approximation method of fractional order system, Proceedings of the 2006 IEEE International Conference on Mechatronics and Automation, Luoyang, China pp. 1043–1048.10.1109/ICMA.2006.257769
  43. Yüce, A., Deniz, F.N. and Tan, N. (2017). A new integer order approximation table for fractional order derivative operators, IFAC-PapersOnLine50(1): 9736–9741.10.1016/j.ifacol.2017.08.2177
DOI: https://doi.org/10.2478/amcs-2019-0023 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 311 - 326
Submitted on: Jun 17, 2018
Accepted on: Jan 8, 2019
Published on: Jul 4, 2019
Published by: University of Zielona Góra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2019 Kishore Bingi, Rosdiazli Ibrahim, Mohd Noh Karsiti, Sabo Miya Hassam, Vivekananda Rajah Harindran, published by University of Zielona Góra
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.