Have a personal or library account? Click to login
LMI–Based Robust Control of Uncertain Nonlinear Systems via Polytopes of Polynomials Cover

LMI–Based Robust Control of Uncertain Nonlinear Systems via Polytopes of Polynomials

Open Access
|Jul 2019

References

  1. Amato, F., Pironti, A. and Scala, S. (1996). Necessary and sufficient conditions for quadratic stability and stabilizability of uncertain linear time-varying systems, IEEE Transactions on Automatic Control41(1): 125–128.10.1109/9.481616
  2. Apkarian, P. and Gahinet, P. (1995). A convex characterization of gain-scheduled h controllers, IEEE Transactions on Automatic Control40(5): 853–864.10.1109/9.384219
  3. Barber, C.B., Dobkin, D.P. and Huhdanpaa, H. (1996). The quickhull algorithm for convex hulls, ACM Transactions on Mathematical Software (TOMS)22(4): 469–483.10.1145/235815.235821
  4. Barmish, B.R., Hollot, C.V., Kraus, F.J. and Tempo, R. (1992). Extreme point results for robust stabilization of interval plants with first-order compensators, IEEE Transactions on Automatic Control37(6): 707–714.10.1109/9.256326
  5. Bartlett, A.C., Hollot, C.V. and Lin, H. (1988). Root locations of an entire polytope of polynomials: It suffices to check the edges, Mathematics of Control, Signals and Systems1(1): 61–71.10.1007/BF02551236
  6. Baumann, W. and Rugh, W. (1986). Feedback control of nonlinear systems by extended linearization, IEEE Transactions on Automatic Control31(1): 40–46.10.1109/TAC.1986.1104100
  7. Białas, S. (1985). A necessary and sufficient condition for the stability of convex combinations of stable polynomials or matrices, Bulletin of the Polish Academy of Sciences33(9–10): 473–480.
  8. Białas, S. and Góra, M. (2012). A few results concerning the Hurwitz stability of polytopes of complex polynomials, Linear Algebra and Its Applications436(5): 1177–1188.10.1016/j.laa.2011.07.042
  9. Boyd, S., Ghaoui, L.E., Feron, E. and Belakrishnan, V. (1994). Linear Matrix Inequalities in System and Control Theory, SIAM, Philadelphia, PA.10.1137/1.9781611970777
  10. Dorf, R. and Bishop, R. (1998). Modern Control Systems, Pearson (Addison-Wesley), Upper Saddle River, NJ.
  11. Ebihara, Y., Peaucelle, D., Arzelier, D., Hagiwara, T. and Oishi, Y. (2012). Dual LMI approach to linear positive system analysis, 12th International Conference on Control, Automation and Systems (ICCAS), JeJu Island, South Korea, pp. 887–891.
  12. Gahinet, P., Nemirovski, A., Laub, A.J. and Chilali, M. (1995). LMI Control Toolbox, Math Works, Natick, MA.
  13. González, T. and Bernal, M. (2016). Progressively better estimates of the domain of attraction for nonlinear systems via piecewise Takagi–Sugeno models: Stability and stabilization issues, Fuzzy Sets and Systems297: 73–95.10.1016/j.fss.2015.11.010
  14. González, T., Bernal, M., Sala, A. and Aguiar, B. (2017). Cancellation-based nonquadratic controller design for nonlinear systems via Takagi–Sugeno models, IEEE Transactions on Cybernetics47(9): 2628–2638.10.1109/TCYB.2016.258954327542189
  15. Guerra, T.M., Estrada-Manzo, V. and Lendek, Z. (2015). Observer design of nonlinear descriptor systems: An LMI approach, Automatica52: 154–159.10.1016/j.automatica.2014.11.008
  16. Guerra, T.M. and Vermeiren, L. (2004). LMI-based relaxed non-quadratic stabilization conditions for nonlinear systems in Takagi–Sugeno’s form, Automatica40(5): 823–829.10.1016/j.automatica.2003.12.014
  17. Henrion, D., Sebek, M. and Kucera, V. (2003). Positive polynomials and robust stabilization with fixed-order controllers, IEEE Transactions on Automatic Control48(7): 1178–1186.10.1109/TAC.2003.814103
  18. Johansen, T.A. (2000). Computation of Lyapunov functions for smooth nonlinear systems using convex optimization, Automatica36(11): 1617–1626.10.1016/S0005-1098(00)00088-1
  19. Khalil, H. (2002). Nonlinear Systems, 3rd Edn., Prentice Hall, Upper Saddle River, NJ.
  20. Kharitonov, V. (1978). Asymptotic stability of an equilibrium position of a family of systems of linear differential equations, Differential Equations14(11): 1483–1485.
  21. Kwiatkowski, A., Boll, M. and Werner, H. (2006). Automated generation and assessment of affine LPV models, 45th IEEE Conference on Decision and Control, San Diego, CA, USA, pp. 6690–6695.10.1109/CDC.2006.377768
  22. Pan, J., Guerra, T., Fei, S. and Jaadari, A. (2012). Nonquadratic stabilization of continuous T–S fuzzy models: LMI solution for a local approach, IEEE Transactions on Fuzzy Systems20(3): 594–602.10.1109/TFUZZ.2011.2179660
  23. Rhee, B. and Won, S. (2006). A new fuzzy Lyapunov function approach for a Takagi–Sugeno fuzzy control system design, Fuzzy Sets and Systems157(9): 1211–1228.10.1016/j.fss.2005.12.020
  24. Robles, R., Sala, A., Bernal, M. and González, T. (2017). Subspace-based Takagi–Sugeno modeling for improved LMI performance, IEEE Transactions on Fuzzy Systems25(4): 754–767.10.1109/TFUZZ.2016.2574927
  25. Sala, A. and Ario, C. (2009). Polynomial fuzzy models for nonlinear control: A Taylor series approach, IEEE Transactions on Fuzzy Systems17(6): 1284–1295.10.1109/TFUZZ.2009.2029235
  26. Sala, A. and Ariño, C. (2007). Asymptotically necessary and sufficient conditions for stability and performance in fuzzy control: Applications of Polya’s theorem, Fuzzy Sets and Systems158(24): 2671–2686.10.1016/j.fss.2007.06.016
  27. Sanchez, M. and Bernal, M. (2017). A convex approach for reducing conservativeness of Kharitonov’s-based robustness analysis, 20th IFAC World Congress, Toulouse, France, pp. 855–860.
  28. Shamma, J.S. and Cloutier, J.R. (1992). A linear parameter varying approach to gain scheduled missile autopilot design, American Control Conference, Chicago, IL, USA, pp. 1317–1321.10.23919/ACC.1992.4792317
  29. Sideris, A. and Barmish, B.R. (1989). An edge theorem for polytopes of polynomials which can drop in degree, Systems & Control Letters13(3): 233–238.10.1016/0167-6911(89)90069-8
  30. Sturm, J.F. (1999). Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones, Optimization Methods and Software11(1–4): 625–653.10.1080/10556789908805766
  31. Tanaka, K., Hori, T. and Wang, H. (2003). A multiple Lyapunov function approach to stabilization of fuzzy control systems, IEEE Transactions on Fuzzy Systems11(4): 582–589.10.1109/TFUZZ.2003.814861
  32. Tanaka, K. and Wang, H. (2001). Fuzzy Control Systems Design and Analysis. A Linear Matrix Inequality Approach, John Wiley&Sons, New York, NY.10.1002/0471224596
  33. Taniguchi, T., Tanaka, K. and Wang, H. (2001). Model construction, rule reduction and robust compensation for generalized form of Takagi–Sugeno fuzzy systems, IEEE Transactions on Fuzzy Systems9(2): 525–537.10.1109/91.940966
  34. Tapia, A., Bernal, M. and Fridman, L. (2017). Nonlinear sliding mode control design: An LMI approach, Systems & Control Letters104: 38–44.10.1016/j.sysconle.2017.03.011
  35. Wang, H., Tanaka, K. and Griffin, M. (1996). An approach to fuzzy control of nonlinear systems: Stability and design issues, IEEE Transactions on Fuzzy Systems4(1): 14–23.10.1109/91.481841
  36. Xu, S., Darouach, M. and Schaefers, J. (1993). Expansion of det(a + b) and robustness analysis of uncertain state space systems, IEEE Transactions on Automatic Control38(11): 1671–1675.10.1109/9.262036
DOI: https://doi.org/10.2478/amcs-2019-0020 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 275 - 283
Submitted on: Jul 13, 2018
Accepted on: Jan 21, 2019
Published on: Jul 4, 2019
Published by: University of Zielona Góra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2019 Marcelino Sánchez, Miguel Bernal, published by University of Zielona Góra
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.