Have a personal or library account? Click to login
Machine learning techniques combined with dose profiles indicate radiation response biomarkers Cover

Machine learning techniques combined with dose profiles indicate radiation response biomarkers

Open Access
|Mar 2019

References

  1. Abbott, A. (2015). Researchers pin down risks of low-dose radiation, Nature523(7558): 17–8.10.1038/523017a26135428
  2. Alexa, A. and Rahnenfuhrer, J. (2010). topGO: Enrichment analysis for gene ontology, R Package Version 2.30.
  3. Ashburner, M., Ball, C.A., Blake, J.A., Botstein, D., Butler, H., Cherry, J.M., Davis, A.P., Dolinski, K., Dwight, S.S., Eppig, J.T., Harris, M.A., Hill, D.P., Issel-Tarver, L., Kasarskis, A., Lewis, S., Matese J.C., Richardson, J.E., Ringwald, M., Rubin, G.M. and Sherlock, G. (2000). Gene Ontology: Tool for the unification of biology, Nature Genetics25(1): 25.10.1038/75556303741910802651
  4. Berger, J.O. and Pericchi, L.R. (1996). The intrinsic Bayes factor for model selection and prediction, Journal of the American Statistical Association91(433): 109–122.10.1080/01621459.1996.10476668
  5. Bersani, C., Xu, L., Vilborg, A., Lui, W. and Wiman, K. (2014). Wig-1 regulates cell cycle arrest and cell death through the p53 targets FAS and 14-3-3σ, Oncogene33(35): 4407.10.1038/onc.2013.594415098724469038
  6. Bolstad, B.M., Irizarry, R.A., Åstrand, M. and Speed, T.P. (2003). A comparison of normalization methods for high density oligonucleotide array data based on variance and bias, Bioinformatics19(2): 185–193.10.1093/bioinformatics/19.2.18512538238
  7. Brenner, D.J., Doll, R., Goodhead, D.T., Hall, E.J., Land, C.E., Little, J.B., Lubin, J.H., Preston, D.L., Preston, R.J., Puskin, J.S., Ron, E., Sachs, R.K., Samet, J.M., Setlow, R.B. and Zaider, M. (2003). Cancer risks attributable to low doses of ionizing radiation: Assessing what we really know, Proceedings of the National Academy of Sciences100(24): 13761–13766.10.1073/pnas.223559210028349514610281
  8. Brodsky, R.A., Vala, M.S., Barber, J.P., Medof, M.E. and Jones, R.J. (1997). Resistance to apoptosis caused by PIG-A gene mutations in paroxysmal nocturnal hemoglobinuria, Proceedings of the National Academy of Sciences94(16): 8756–8760.10.1073/pnas.94.16.8756231149238050
  9. Cruz-Garcia, L., O’Brien, G., Donovan, E., Gothard, L., Boyle, S., Laval, A., Testard, I., Ponge, L., Woźniak, G., Miszczyk, L., Candéias, S.M., Ainsbury E., Widlak, P., Somaiah, N. and Badie, C. (2018). Influence of confounding factors on radiation dose estimation in in vivo validated transcriptional biomarkers, Health Physics115(1): 90–101.10.1097/HP.0000000000000844596763529787434
  10. Dai, M., Wang, P., Boyd, A.D., Kostov, G., Athey, B., Jones, E.G., Bunney, W.E., Myers, R.M., Speed, T.P., Akil, H., Watson, S.J. and Meng, F. (2005). Evolving gene/transcript definitions significantly alter the interpretation of GeneChip data, Nucleic Acids Research33(20): e175–e175.10.1093/nar/gni179128354216284200
  11. Elf, A.-K., Bernhardt, P., Hofving, T., Arvidsson, Y., Forssell-Aronsson, E., Wängberg, B., Nilsson, O. and Johanson, V. (2017). NAMPT inhibitor GMX1778 enhances the efficacy of 177Lu-DOTATATE treatment of neuroendocrine tumors, Journal of Nuclear Medicine58(2): 288–292.10.2967/jnumed.116.17758427688470
  12. Fargeas, A., Albera, L., Kachenoura, A., Dréan, G., Ospina, J.-D., Coloigner, J., Lafond, C., Delobel, J.-B., De Crevoisier, R. and Acosta, O. (2015). On feature extraction and classification in prostate cancer radiotherapy using tensor decompositions, Medical Engineering and Physics37(1): 126–131.10.1016/j.medengphy.2014.08.00925443534
  13. Finnon, P., Kabacik, S., MacKay, A., Raffy, C., AHern, R., Owen, R., Badie, C., Yarnold, J. and Bouffler, S. (2012). Correlation of in vitro lymphocyte radiosensitivity and gene expression with late normal tissue reactions following curative radiotherapy for breast cancer, Radiotherapy and Oncology105(3): 329–336.10.1016/j.radonc.2012.10.00723157981
  14. Francescatto, M., Chierici, M., Dezfooli, S.R., Zandonà, A., Jurman, G. and Furlanello, C. (2018). Multi-omics integration for neuroblastoma clinical endpoint prediction, Biology Direct13(1): 5.10.1186/s13062-018-0207-8590772229615097
  15. Guidi, G., Maffei, N., Vecchi, C., Gottardi, G., Ciarmatori, A., Mistretta, G. M., Mazzeo, E., Giacobazzi, P., Lohr, F. and Costi, T. (2017). Expert system classifier for adaptive radiation therapy in prostate cancer, Australasian Physical & Engineering Sciences in Medicine40(2): 337–348.10.1007/s13246-017-0535-528290067
  16. Jagga, Z. and Gupta, D. (2015). Machine learning for biomarker identification in cancer research—developments toward its clinical application, Personalized Medicine12(4): 371–387.10.2217/pme.15.529771660
  17. Johnson, W.E., Li, C. and Rabinovic, A. (2007). Adjusting batch effects in microarray expression data using empirical Bayes methods, Biostatistics8(1): 118–127.10.1093/biostatistics/kxj03716632515
  18. Joiner, M.C. (2004). A simple α/β-independent method to derive fully isoeffective schedules following changes in dose per fraction, International Journal of Radiation Oncology Biology Physics58(3): 871–875.10.1016/j.ijrobp.2003.10.03614967444
  19. Jonckheere, A.R. (1954). A distribution-free k-sample test against ordered alternatives, Biometrika41(1/2): 133–145.10.1093/biomet/41.1-2.133
  20. Kabacik, S., Mackay, A., Tamber, N., Manning, G., Finnon, P., Paillier, F., Ashworth, A., Bouffler, S. and Badie, C. (2011). Gene expression following ionising radiation: Identification of biomarkers for dose estimation and prediction of individual response, International Journal of Radiation Biology87(2): 115–129.10.3109/09553002.2010.51942421067298
  21. Kabacik, S., Manning, G., Raffy, C., Bouffler, S. and Badie, C. (2015). Time, dose and ataxia telangiectasia mutated (ATM) status dependency of coding and noncoding RNA expression after ionizing radiation exposure, Radiation Research183(3): 325–337.10.1667/RR13876.125738893
  22. Kong, X., Liu, N. and Xu, X. (2014). Bioinformatics analysis of biomarkers and transcriptional factor motifs in down syndrome, Brazilian Journal of Medical and Biological Research47(10): 834–841.10.1590/1414-431X20143792
  23. Krol, L. (2015). Distributed Monte Carlo feature selection: Extracting informative features out of multidimensional problems with linear speedup, in S. Kozielski et al. (Eds.), Beyond Databases, Architectures and Structures. Advanced Technologies for Data Mining and Knowledge Discovery, Springer, Cham, pp. 463–474.10.1007/978-3-319-34099-9_35
  24. Manning, G., Kabacik, S., Finnon, P., Bouffler, S. and Badie, C. (2013). High and low dose responses of transcriptional biomarkers in ex vivo X-irradiated human blood, International Journal of Radiation Biology89(7): 512–522.10.3109/09553002.2013.769694
  25. Meehan, T.F., Vasilevsky, N.A., Mungall, C.J., Dougall, D.S., Haendel, M.A., Blake, J.A. and Diehl, A.D. (2013). Ontology based molecular signatures for immune cell types via gene expression analysis, BMC Bioinformatics14(1): 263.10.1186/1471-2105-14-263
  26. Mullenders, L., Atkinson, M., Paretzke, H., Sabatier, L. and Bouffler, S. (2009). Assessing cancer risks of low-dose radiation, Nature Reviews Cancer9(8): 596.10.1038/nrc2677
  27. Papiez, A., Finnon, P., Badie, C., Bouffler, S. and Polanska, J. (2014). Integrating expression data from different microarray platforms in search of biomarkers of radiosensitivit, International Work-Conference on Bioinformatics and Biomedical Engineering, Granada, Spain, Vol. 1, pp. 484–493.
  28. Park, B., Yee, C. and Lee, K.-M. (2014). The effect of radiation on the immune response to cancers, International Journal of Molecular Sciences15(1): 927–943.10.3390/ijms15010927
  29. Parmar, C., Grossmann, P., Bussink, J., Lambin, P. and Aerts, H.J. (2015). Machine learning methods for quantitative radiomic biomarkers, Scientific Reports5(13087): 13087.10.1038/srep13087
  30. Ray, M., Yunis, R., Chen, X. and Rocke, D.M. (2012). Comparison of low and high dose ionising radiation using topological analysis of gene coexpression networks, BMC Genomics13(1): 190.10.1186/1471-2164-13-190
  31. Reinhardt, M.J., Kubota, K., Yamada, S., Iwata, R. and Yaegashi, H. (1997). Assessment of cancer recurrence in residual tumors after fractionated radiotherapy: A comparison of fluorodeoxyglucose, L-methionine and thymidine, The Journal of Nuclear Medicine38(2): 280.
  32. Schmid, P.R., Palmer, N.P., Kohane, I.S. and Berger, B. (2012). Making sense out of massive data by going beyond differential expression, Proceedings of the National Academy of Sciences109(15): 5594–5599.10.1073/pnas.1118792109
  33. Shao, L., Luo, Y. and Zhou, D. (2014). Hematopoietic stem cell injury induced by ionizing radiation, Antioxidants & Redox Signaling20(9): 1447–1462.10.1089/ars.2013.5635
  34. Terpstra, T.J. (1952). The asymptotic normality and consistency of Kendall’s test against trend, when ties are present in one ranking, Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen55(1): 327–333.10.1016/S1385-7258(52)50043-X
  35. UNSCEAR (2000). Sources and Effects of Ionizing Radiation, Vol. 1, United Nations Publications, New York, NY.
  36. Weichselbaum, R.R., Hallahan, D., Fuks, Z. and Kufe, D. (1994). Radiation induction of immediate early genes: Effectors of the radiation-stress response, International Journal of Radiation Oncology, Biology, Physics30(1): 229–234.10.1016/0360-3016(94)90539-8
  37. Yarnold, J., Ashton, A., Bliss, J., Homewood, J., Harper, C., Hanson, J., Haviland, J., Bentzen, S. and Owen, R. (2005). Fractionation sensitivity and dose response of late adverse effects in the breast after radiotherapy for early breast cancer: Long-term results of a randomised trial, Radiotherapy and Oncology75(1): 9–17.10.1016/j.radonc.2005.01.00515878095
  38. Zhan, Q. (2005). GADD45A, a p53-and BRCA1-regulated stress protein, in cellular response to DNA damage, Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis569(1): 133–143.10.1016/j.mrfmmm.2004.06.05515603758
DOI: https://doi.org/10.2478/amcs-2019-0013 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 169 - 178
Submitted on: Feb 28, 2018
Accepted on: Oct 18, 2018
Published on: Mar 29, 2019
Published by: University of Zielona Góra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2019 Anna Papiez, Christophe Badie, Joanna Polanska, published by University of Zielona Góra
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.