Have a personal or library account? Click to login
The Feature Selection Problem in Computer–Assisted Cytology Cover
Open Access
|Jan 2019

References

  1. Araújo, T., Aresta, G., Castro, E., Rouco, J., Aguiar, P., Eloy, C., Polónia, A. and Campilho, A. (2017). Classification of breast cancer histology images using convolutional neural networks, PLOS ONE 12(6): 1-14.10.1371/journal.pone.0177544545342628570557
  2. Breiman, L., Friedman, J., Olshen, R. and Stone, C. (1984). Classification and Regression Trees, Wadsworth & Brooks/Cole Advanced Books & Software, Monterey, CA.
  3. Cheng, J. and Rajapakse, J.C. (2009). Segmentation of clustered nuclei with shape markers and marking function, IEEE Transactions on Biomedical Engineering 56(3): 741-748.10.1109/TBME.2008.200863519272880
  4. Cortes, C. and Vapnik, V. (1995). Support-vector networks, Machine Learning 20(3): 273-297.10.1007/BF00994018
  5. Cover, T. and Hart, P. (1967). Nearest neighbor pattern classification, IEEE Transactions on Information Theory 13(1): 21-27.10.1109/TIT.1967.1053964
  6. Filipczuk, P., Fevens, T., Krzyżak, A. and Monczak, R. (2013). Computer-aided breast cancer diagnosis based on the analysis of cytological images of fine needle biopsies, IEEE Transactions on Medical Imaging 32(12): 2169-2178.10.1109/TMI.2013.227515123912498
  7. Haralick, R., Shanmugam, K. and Dinstein, I. (1973). Textural features for image classification, IEEE Transactions on Systems, Man, and Cybernetics 3(6): 610-621.10.1109/TSMC.1973.4309314
  8. ImageJ (2015). Nuclei watershed separation, https://imagej.net/Nuclei_Watershed_Separation.
  9. Irshad, H., Veillard, A., Roux, L. and Racoceanu, D. (2014). Methods for nuclei detection, segmentation, and classification in digital histopathology: A review-current status and future potential, IEEE Reviews in Biomedical Engineering 7: 97-114.10.1109/RBME.2013.229580424802905
  10. Jeleń, L., Fevens, T. and Krzyżak, A. (2008). Classification of breast cancer malignancy using cytological images of fine needle aspiration biopsies, International Journal of Applied Mathematics and Computer Science 18(1): 75-83, DOI: 10.2478/v10006-008-0007-x.10.2478/v10006-008-0007-x
  11. Jung, C. and Kim, C. (2010). Segmenting clustered nuclei using H-minima transform-based marker extraction and contour parameterization, IEEE Transactions on Biomedical Engineering 57(10): 2600-2604.10.1109/TBME.2010.206033620656653
  12. Khoshdeli, M., Cong, R. and Parvin, B. (2017). Detection of nuclei in H&E stained sections using convolutional neural networks, 2017 IEEE EMBS International Conference on Biomedical Health Informatics, Orlando, FL, USA, pp. 105-108.10.1109/BHI.2017.7897216
  13. Kłeczek, P., Dyduch, G., Jaworek-Korjakowska, J. and Tadeusiewicz, R. (2017). Automated epidermis segmentation in histopathological images of human skin stained with hematoxylin and eosin, Proceedings of SPIE: Medical Imaging 10140: 10140-10140-19.10.1117/12.2249018
  14. Kowal, M. and Filipczuk, P. (2014). Nuclei segmentation for computer-aided diagnosis of breast cancer, International Journal of Applied Mathematics and Computer Science 24(1): 19-31, DOI: 10.2478/amcs-2014-0002.10.2478/amcs-2014-0002
  15. Koyuncu, C.F., Akhan, E., Ersahin, T., Cetin-Atalay, R. and Gunduz-Demir, C. (2016). Iterative h-minima-based marker-controlled watershed for cell nucleus segmentation, Cytometry A 89(4): 338-349.10.1002/cyto.a.2282426945784
  16. Nurzynska, K. (2018). Optimal parameter search for colour normalization aiding cell nuclei segmentation, in S. Kozielski et al. (Eds.), Beyond Databases, Architectures and Structures. Facing the Challenges of Data Proliferation and Growing Variety, Springer International Publishing, Cham, pp. 349-360.10.1007/978-3-319-99987-6_27
  17. Otsu, N. (1979). A threshold selection method from gray-level histograms, IEEE Transactions on Systems, Man, and Cybernetics 9(1): 62-66.10.1109/TSMC.1979.4310076
  18. Paramanandam, M., O’Byrne, M., Ghosh, B., Mammen, J.J., Manipadam, M.T., Thamburaj, R. and Pakrashi, V. (2016). Automated segmentation of nuclei in breast cancer histopathology images, PLOS ONE 11(9): 1-15.10.1371/journal.pone.0162053502986627649496
  19. Piórkowski, A. (2016). A statistical dominance algorithm for edge detection and segmentation of medical images, in E. Pietka et al. (Eds.), Information Technologies in Medicine, Advances in Intelligent Systems and Computing, Vol. 471, Springer, Cham, pp. 3-14.10.1007/978-3-319-39796-2_1
  20. Roffo, G. (2016). Feature selection library (Matlab toolbox), arXiv: 1607.01327.
  21. Ronneberger, O., Fischer, P. and Brox, T. (2015). U-net: Convolutional networks for biomedical image segmentation, CoRR: abs/1505.04597.10.1007/978-3-319-24574-4_28
  22. Ruifrok, A.C. and Johnston, D.A. (2001). Quantification of histochemical staining by color deconvolution, Analytical and Quantitative Cytology and Histology 23(4): 291-299.
  23. Sadanandan, S.K., Ranefall, P., Guyader, S.L. and Wählby, C. (2017). Automated training of deep convolutional neural networks for cell segmentation, Scientific Report 7: 7860, DOI: 10.1038/s41598-017-07599-6.10.1038/s41598-017-07599-6555280028798336
  24. Spearman, C. (1904). The proof and measurement of association between two things, The American Journal of Psychology 15(1): 72-101.10.2307/1412159
  25. Szemenyei, M. and Vajda, F. (2017). Dimension reduction for objects composed of vector sets, International Journal of Applied Mathematics and Computer Science 27(1): 169-180, DOI: 10.1515/amcs-2017-0012.10.1515/amcs-2017-0012
  26. Tang, X. (1998). Texture information in run-length matrices, IEEE Transactions on Image Processing 7(11): 1602-1609.10.1109/83.72536718276225
  27. Vincent, L. (1993). Morphological grayscale reconstruction in image analysis: Applications and Efficient Algorithms, IEEE Transactions on Image Processing 2(2): 176-201.10.1109/83.21722218296207
  28. Więcławek, W. and Piętka, E. (2015). Watershed based intelligent scissors, Computerized Medical Imaging and Graphics 43: 122 - 129.10.1016/j.compmedimag.2015.01.00325698546
  29. Yang, X., Li, H. and Zhou, X. (2006). Nuclei segmentation using marker-controlled watershed, tracking using mean-shift, and Kalman filter in time-lapse microscopy, IEEE Transactions on Circuits and Systems I: Regular Papers 53(11): 2405-2414.10.1109/TCSI.2006.884469
DOI: https://doi.org/10.2478/amcs-2018-0058 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 759 - 770
Submitted on: Oct 23, 2018
Accepted on: Dec 10, 2018
Published on: Jan 11, 2019
Published by: University of Zielona Góra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2019 Marek Kowal, Marcin Skobel, Norbert Nowicki, published by University of Zielona Góra
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.