Have a personal or library account? Click to login
Impact of Low Resolution on Image Recognition with Deep Neural Networks: An Experimental Study Cover

Impact of Low Resolution on Image Recognition with Deep Neural Networks: An Experimental Study

Open Access
|Jan 2019

References

  1. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mane, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viegas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y. and Zheng, X. (2016). TensorFlow: Large-scale machine learning on heterogeneous distributed systems, arXiv: 1603.04467.
  2. Bevilacqua, M., Roumy, A., Guillemot, C. and Alberi-Morel, M.L. (2012). Low-complexity single-image super-resolution based on nonnegative neighbor embedding, British Machine Vision Conference (BMVC), Guildford, UK.10.5244/C.26.135
  3. Chang, H., Yeung, D.-Y. and Xiong, Y. (2004). Super-resolution through neighbor embedding, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR, Washington, DC, USA, Vol. 1, pp. I-I.
  4. da Costa, G.B.P., Contato, W.A., Nazare, T.S., Neto, J.E. and Ponti, M. (2016). An empirical study on the effects of different types of noise in image classification tasks, arXiv: 1609.02781.
  5. Dodge, S. and Karam, L. (2016). Understanding how image quality affects deep neural networks, 8th International Conference on Quality of Multimedia Experience (QoMEX), Lisbon, Portugal, pp. 1-6.10.1109/QoMEX.2016.7498955
  6. Dong, C., Loy, C.C., He, K. and Tang, X. (2014). Learning a deep convolutional network for image super-resolution, European Conference on Computer Vision, Zurich, Switzerland, pp. 184-199.10.1007/978-3-319-10593-2_13
  7. Dong, C., Loy, C.C. and Tang, X. (2016). Accelerating the super-resolution convolutional neural network, European Conference on Computer Vision, Amsterdam, The Netherlands, pp. 391-407.10.1007/978-3-319-46475-6_25
  8. Dutta, A., Veldhuis, R.N. and Spreeuwers, L.J. (2012). The impact of image quality on the performance of face recognition, 33rd WIC Symposium on Information Theory in the Benelux, Boekelo, The Netherlands, pp. 141-148.
  9. Freeman, W.T., Jones, T.R. and Pasztor, E.C. (2002). Example-based super-resolution, IEEE Computer Graphics and Applications 22(2): 56-65.10.1109/38.988747
  10. Goodfellow, I., Bengio, Y. and Courville, A. (2016). Deep Learning, MIT Press, Cambridge, MA.
  11. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A. and Bengio, Y. (2014). Generative adversarial nets, in Z. Ghahramani et al. (Eds.), Advances in Neural Information Processing Systems, Curran Associates, Inc., Red Hook, NY, pp. 2672-2680.
  12. He, K., Zhang, X., Ren, S. and Sun, J. (2016). Deep residual learning for image recognition, Proceedings of the IEEE10.1109/CVPR.2016.90
  13. Huang, J.-B., Singh, A. and Ahuja, N. (2015). Single image super-resolution from transformed self-exemplars, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, pp. 5197-5206.10.1109/CVPR.2015.7299156
  14. Johnson, J., Karpathy, A. and Fei-Fei, L. (2016). DenseCap: Fully convolutional localization networks for dense captioning, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, VN, USA, pp. 4565-4574.10.1109/CVPR.2016.494
  15. Karahan, S., Yildirum, M.K., Kirtac, K., Rende, F.S., Butun, G. and Ekenel, H.K. (2016). How image degradations affect deep CNN-based face recognition, International Conference of the Biometrics Special Interest Group (BIOSIG), Darmstadt, Germany, pp. 1-5.10.1109/BIOSIG.2016.7736924
  16. Kim, J., Kwon Lee, J. and Mu Lee, K. (2016). Accurate image super-resolution using very deep convolutional networks, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, pp. 1646-1654.10.1109/CVPR.2016.182
  17. Kingma, D. and Ba, J. (2014). Adam: A method for stochastic optimization, arXiv: 1412.6980.
  18. Koziarski, M. and Cyganek, B. (2017). Image recognition with deep neural networks in presence of noise-dealing with and taking advantage of distortions, Integrated Computer- Aided Engineering 24(4): 337-349.10.3233/ICA-170551
  19. Krizhevsky, A., Sutskever, I. and Hinton, G.E. (2012). ImageNet classification with deep convolutional neural networks, Neural Information Processing Systems, Lake Tahoe, CA, USA, pp. 1097-1105.
  20. Ledig, C., Theis, L., Huszár, F., Caballero, J., Cunningham, A., Acosta, A., Aitken, A., Tejani, A., Totz, J., Wang, Z. and Shi, W. (2016). Photo-realistic single image super-resolution using a generative adversarial network, arXiv: 1609.04802.10.1109/CVPR.2017.19
  21. Lim, B., Son, S., Kim, H., Nah, S. and Lee, K.M. (2017). Enhanced deep residual networks for single image super-resolution, IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop, Honolulu, HI, USA, Vol. 1, p. 3.10.1109/CVPRW.2017.151
  22. Long, J., Shelhamer, E. and Darrell, T. (2015). Fully convolutional networks for semantic segmentation, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, pp. 3431-3440.10.1109/CVPR.2015.7298965
  23. Mao, X., Shen, C. and Yang, Y.-B. (2016). Image restoration using very deep convolutional encoder-decoder networks with symmetric skip connections, Neural Information Processing Systems, Barcelona, Spain, pp. 2802-2810.
  24. Martin, D., Fowlkes, C., Tal, D. and Malik, J. (2001). A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics, 8th IEEE International Conference on Computer Vision, ICCV 2001, Vancouver, Canada, Vol. 2, pp. 416-423.
  25. Peng, X., Hoffman, J., Stella, X.Y. and Saenko, K. (2016). Fine-to-coarse knowledge transfer for low-res image classification, IEEE International Conference on Image Processing (ICIP), Phoenix, AZ, USA, pp. 3683-3687.10.1109/ICIP.2016.7533047
  26. Ronneberger, O., Fischer, P. and Brox, T. (2015). U-net: Convolutional networks for biomedical image segmentation, International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, pp. 234-241.10.1007/978-3-319-24574-4_28
  27. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., Berg, A.C. and Fei-Fei, L. (2015). ImageNet large scale visual recognition challenge, International Journal of Computer Vision 115(3): 211-252.10.1007/s11263-015-0816-y
  28. Sanchez, A., Moreno, A.B., Velez, D. and V´elez, J.F. (2016). Analyzing the influence of contrast in large-scale recognition of natural images, Integrated Computer-Aided Engineering 23(3): 221-235.10.3233/ICA-160516
  29. Schmidhuber, J. (2015). Deep learning in neural networks: An overview, Neural Networks 61(1): 85-117.10.1016/j.neunet.2014.09.00325462637
  30. Schulter, S., Leistner, C. and Bischof, H. (2015). Fast and accurate image upscaling with super-resolution forests, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, pp. 3791-3799.10.1109/CVPR.2015.7299003
  31. Shi, W., Caballero, J., Huszár, F., Totz, J., Aitken, A.P., Bishop, R., Rueckert, D. and Wang, Z. (2016). Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, pp. 1874-1883.10.1109/CVPR.2016.207
  32. Simonyan, K. and Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition, arXiv: 1409.1556.
  33. Sun, Y., Wang, X. and Tang, X. (2013). Deep convolutional network cascade for facial point detection, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Portland, OR, USA, pp. 3476-3483.10.1109/CVPR.2013.446
  34. Tai, Y., Yang, J. and Liu, X. (2017). Image super-resolution via deep recursive residual network, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, pp. 2790-2798.10.1109/CVPR.2017.298
  35. Timofte, R., De Smet, V. and Van Gool, L. (2014). A+: Adjusted anchored neighborhood regression for fast super-resolution, Asian Conference on Computer Vision, Singapore, Singapore, pp. 111-126.10.1007/978-3-319-16817-3_8
  36. Vasiljevic, I., Chakrabarti, A. and Shakhnarovich, G. (2016). Examining the impact of blur on recognition by convolutional networks, arXiv: 1611.05760.
  37. Yang, J., Wright, J., Huang, T.S. and Ma, Y. (2010). Image super-resolution via sparse representation, IEEE Transactions on Image Processing 19(11): 2861-2873.10.1109/TIP.2010.205062520483687
  38. Zeyde, R., Elad, M. and Protter, M. (2010). On single image scale-up using sparse-representations, International Conference on Curves and Surfaces, Paris, France, pp. 711-730.10.1007/978-3-642-27413-8_47
  39. Zou, W.W. and Yuen, P.C. (2012). Very low resolution face recognition problem, IEEE Transactions on Image Processing 21(1): 327-340.10.1109/TIP.2011.216242321775262
DOI: https://doi.org/10.2478/amcs-2018-0056 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 735 - 744
Submitted on: Dec 5, 2017
Accepted on: Apr 12, 2018
Published on: Jan 11, 2019
Published by: University of Zielona Góra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2019 Michał Koziarski, Bogusław Cyganek, published by University of Zielona Góra
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.