Have a personal or library account? Click to login
A Memory–Efficient Noninteger–Order Discrete–Time State–Space Model of a Heat Transfer Process Cover

A Memory–Efficient Noninteger–Order Discrete–Time State–Space Model of a Heat Transfer Process

Open Access
|Jan 2019

References

  1. Al-Alaoui,M. (1993). Novel digital integrator and differentiator, Electronics Letters 29(4): 376-378.10.1049/el:19930253
  2. Almeida, R. and Torres, D.F.M. (2011). Necessary and sufficient conditions for the fractional calculus of variations with Caputo derivatives, Communications in Nonlinear Science and Numerical Simulation 16(3): 1490-1500.10.1016/j.cnsns.2010.07.016
  3. Rauh, A., Senkel, L., Aschemann, H., Saurin, V.V. and Kostin, G.V. (2016). An integrodifferential approach to modeling, control, state estimation and optimization for heat transfer systems, International Journal of Applied Mathematics and Computer Science 26(1): 15-30, DOI: 10.1515/amcs-2016-0002.10.1515/amcs-2016-0002
  4. Baeumer, B., Kurita, S. and Meerschaert, M. (2005). Inhomogeneous fractional diffusion equations, Fractional Calculus and Applied Analysis 8(4): 371-386.
  5. Balachandran, K. and Divya, S. (2014). Controllability of nonlinear implicit fractional integrodifferential systems, International Journal of Applied Mathematics and Computer Science 24(4): 713-722, DOI: 10.2478/amcs-2014-0052.10.2478/amcs-2014-0052
  6. Balachandran, K. and Kokila, J. (2012). On the controllability of fractional dynamical systems, International Journal of Applied Mathematics and Computer Science 22(3): 523-531, DOI: 10.2478/v10006-012-0039-0.10.2478/v10006-012-0039-0
  7. Bartecki, K. (2013). A general transfer function representation for a class of hyperbolic distributed parameter systems, International Journal of Applied Mathematics and Computer Science 23(2): 291-307, DOI: 10.2478/amcs-2013-0022.10.2478/amcs-2013-0022
  8. Caponetto, R., Dongola, G., Fortuna, L. and Petras, I. (2010). Fractional order systems: Modeling and control applications, in L.O. Chua (Ed.), World Scientific Series on Nonlinear Science, University of California, Berkeley, CA, pp. 1-178.10.1142/7709
  9. Chen, Y.Q. and Moore, K.L. (2002). Discretization schemes for fractional-order differentiators and integrators, IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications 49(3): 263-269.10.1109/81.989172
  10. Das, S. (2010). Functional Fractional Calculus for System Identification and Control, Springer, Berlin.10.1007/978-3-642-20545-3_10
  11. Dlugosz, M. and Skruch, P. (2015). The application of fractional-order models for thermal process modelling inside buildings, Journal of Building Physics 1(1): 1-13.
  12. Dzieliński, A., Sierociuk, D. and Sarwas, G. (2010). Some applications of fractional order calculus, Bulletin of the Polish Academy of Sciences: Technical Sciences 58(4): 583-592.10.2478/v10175-010-0059-6
  13. Gal, C. and Warma, M. (2016). Elliptic and parabolic equations with fractional diffusion and dynamic boundary conditions, Evolution Equations and Control Theory 5(1): 61-103.10.3934/eect.2016.5.61
  14. Kaczorek, T. (2011). Selected Problems of Fractional Systems Theory, Springer, Berlin.10.1007/978-3-642-20502-6
  15. Kaczorek, T. (2016). Reduced-order fractional descriptor observers for a class of fractional descriptor continuous-time nonlinear systems, International Journal of Applied Mathematics and Computer Science 26(2): 277-283, DOI: 10.1515/amcs-2016-0019.10.1515/amcs-2016-0019
  16. Kaczorek, T. and Rogowski, K. (2014). Fractional Linear Systems and Electrical Circuits, Bialystok University of Technology, Bialystok.10.1007/978-3-319-11361-6
  17. Kochubei, A. (2011). Fractional-parabolic systems, arXiv:1009.4996 [math.ap].10.1007/s11118-011-9243-z
  18. Mitkowski, W. (1991). Stabilization of Dynamic Systems, WNT, Warsaw, (in Polish).
  19. Mitkowski, W. (2011). Approximation of fractional diffusion-wave equation, Acta Mechanica et Automatica 5(2): 65-68.
  20. N’Doye, I., Darouach, M., Voos, H. and Zasadzinski, M. (2013). Design of unknown input fractional-order observers for fractional-order systems, International Journal of Applied Mathematics and Computer Science 23(3): 491-500, DOI: 10.2478/amcs-2013-0037.10.2478/amcs-2013-0037
  21. Obrączka, A. (2014). Control of Heat Processes with the Use of Non-integer Models, PhD thesis, AGH UST, Kraków.
  22. Oprzędkiewicz, K. (2003). The interval parabolic system, Archives of Control Sciences 13(4): 415-430.
  23. Oprzędkiewicz, K. (2004). A controllability problem for a class of uncertain parameters linear dynamic systems, Archives of Control Sciences 14(1): 85-100.
  24. Oprzędkiewicz, K. (2005). An observability problem for a class of uncertain-parameter linear dynamic systems, International Journal of Applied Mathematics and Computer Science 15(3): 331-338.
  25. Oprzędkiewicz, K. and Gawin, E. (2016). A noninteger order, state space model for one dimensional heat transfer process, Archives of Control Sciences 26(2): 261-275.10.1515/acsc-2016-0015
  26. Oprzędkiewicz, K., Gawin, E. and Mitkowski, W. (2016a). Modeling heat distribution with the use of a noninteger order, state space model, International Journal of Applied Mathematics and Computer Science 26(4): 749-756, DOI: 10.1515/amcs-2016-0052.10.1515/amcs-2016-0052
  27. Oprzędkiewicz, K., Gawin, E. and Mitkowski, W. (2016b). Parameter identification for noninteger order, state space models of heat plant, MMAR 2016: 21st International Conference on Methods and Models in Automation and Robotics, Międzyzdroje, Poland, pp. 184-188.10.1109/MMAR.2016.7575130
  28. Oprzędkiewicz, K., Mitkowski, W. and Gawin, E. (2017a). An accuracy estimation for a noninteger order, discrete, state space model of heat transfer process, Automation 2017: Innovations in Automation, Robotics and Measurement Techniques, Warsaw, Poland, pp. 86-98.10.1007/978-3-319-54042-9_8
  29. Oprzędkiewicz, K., Stanisławski, R., Gawin, E. and Mitkowski, W. (2017b). A new algorithm for a CFE approximated solution of a discrete-time noninteger-order state equation, Bulletin of the Polish Academy of Sciences: Technical Sciences 65(4): 429-437.10.1515/bpasts-2017-0048
  30. Ostalczyk, P. (2016). Discrete Fractional Calculus. Applications in Control and Image Processing, World Scientific, Singapore.10.1142/9833
  31. Pazy, A. (1983). Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer, New York, NY.10.1007/978-1-4612-5561-1
  32. Petras, I. (2009a). Fractional order feedback control of a DC motor, Journal of Electrical Engineering 60(3): 117-128.
  33. Petras, I. (2009b). http://people.tuke.sk/igor.podlubny/USU/matlab/petras/dfod2.m.
  34. Podlubny, I. (1999). Fractional Differential Equations, Academic Press, San Diego, CA.
  35. Popescu, E. (2010). On the fractional Cauchy problem associated with a feller semigroup, Mathematical Reports 12(2): 181-188.
  36. Sierociuk, D., Skovranek, T.,Macias,M., Podlubny, I., Petras, I., Dzielinski, A. and Ziubinski, P. (2015). Diffusion process modeling by using fractional-order models, Applied Mathematics and Computation 257(1): 2-11.10.1016/j.amc.2014.11.028
  37. Stanisławski, R. and Latawiec, K. (2013a). Stability analysis for discrete-time fractional-order LTI state-space systems. Part I: New necessary and sufficient conditions for asymptotic stability, Bulletin of the Polish Academy of Sciences: Technical Sciences 61(2): 353-361.10.2478/bpasts-2013-0034
  38. Stanisławski, R. and Latawiec, K. (2013b). Stability analysis for discrete-time fractional-order LTI state-space systems. Part II: Stability criterion for FD-based systems, Bulletin of the Polish Academy of Sciences; Technical Sciences 61(2): 362-370.10.2478/bpasts-2013-0035
  39. Stanisławski, R., Latawiec, K. and Łukaniszyn, M. (2015). A comparative analysis of Laguerre-based approximators to the Grünwald-Letnikov fractional-order difference, Mathematical Problems in Engineering 2015(1): 1-10.10.1155/2015/512104
  40. Yang, Q., Liu, F. and Turner, I. (2010). Numerical methods for fractional partial differential equations with Riesz space fractional derivatives, Applied Mathematical Modelling 34(1): 200-218.10.1016/j.apm.2009.04.006
DOI: https://doi.org/10.2478/amcs-2018-0050 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 649 - 659
Submitted on: Mar 5, 2018
Accepted on: Jul 14, 2018
Published on: Jan 11, 2019
Published by: University of Zielona Góra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2019 Krzysztof Oprzędkiewicz, Wojciech Mitkowski, published by University of Zielona Góra
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.