Have a personal or library account? Click to login
Finite–Time Adaptive Modified Function Projective Multi–Lag Generalized Compound Synchronization for Multiple Uncertain Chaotic Systems Cover

Finite–Time Adaptive Modified Function Projective Multi–Lag Generalized Compound Synchronization for Multiple Uncertain Chaotic Systems

Open Access
|Jan 2019

References

  1. Aghababa, M.P., Khanmohammadi, S. and Alizadeh, G. (2011). Finite-time synchronization of two different chaotic systems with unknown parameters via sliding mode technique, Applied Mathematical Modelling 35(6): 3080-3091.10.1016/j.apm.2010.12.020
  2. Ben Brahim, A., Dhahri, S., Ben Hmida, F. and Sellami, A. (2015). An H∞ sliding mode observer for Takagi-Sugeno nonlinear systems with simultaneous actuator and sensor faults, International Journal of Applied Mathematics and Computer Science 25(3): 547-559, DOI: 10.1515/amcs-2015-0041.10.1515/amcs-2015-0041
  3. Bhat, S.P. and Bernstein, D.S. (2000). Finite-time stability of continuous autonomous systems, SIAM Journal on Control and Optimization 38(3): 751-766.10.1137/S0363012997321358
  4. Boccaletti, S. and Valladares, D. (2000). Characterization of intermittent lag synchronization, Physical Review E 62(5 B): 7497.10.1103/PhysRevE.62.749711102117
  5. Cai, N., Jing, Y. and Zhang, S. (2010). Modified projective synchronization of chaotic systems with disturbances via active sliding mode control, Communications in Nonlinear Science and Numerical Simulation 15(6): 1613-1620.10.1016/j.cnsns.2009.06.012
  6. Chen, Y., Fei, S. and Li, Y. (2015). Stabilization of neutral time-delay systems with actuator saturation via auxiliary time-delay feedback, Automatica 52(C): 242-247.10.1016/j.automatica.2014.11.015
  7. Chen, Y., Wu, X. and Gui, Z. (2010). Global synchronization criteria for a class of third-order non-autonomous chaotic systems via linear state error feedback control, Applied Mathematical Modelling 34(12): 4161-4170.10.1016/j.apm.2010.04.013
  8. Cheng, L., Yang, Y., Li, L. and Sui, X. (2018). Finite-time hybrid projective synchronization of the drive-response complex networks with distributed-delay via adaptive intermittent control, Physica A: Statistical Mechanics and Its Applications 500(15): 273-286.10.1016/j.physa.2018.02.124
  9. Du, H., Zeng, Q. and L¨u, N. (2010). A general method for modified function projective lag synchronization in chaotic systems, Physics Letters A 374(13): 1493-1496.10.1016/j.physleta.2010.01.058
  10. Du, H., Zeng, Q. and Wang, C. (2008). Function projective synchronization of different chaotic systems with uncertain parameters, Physics Letters A 372(33): 5402-5410.10.1016/j.physleta.2008.06.036
  11. Du, H., Zeng, Q. and Wang, C. (2009). Modified function projective synchronization of chaotic system, Chaos Solitons and Fractals 42(4): 2399-2404.10.1016/j.chaos.2009.03.120
  12. Fedele, G., D’Alfonso, L., Pin, G. and Parisini, T. (2018). Volterras kernels-based finite-time parameters estimation of the Chua system, Applied Mathematics and Computation 318(1): 121-130.10.1016/j.amc.2017.08.039
  13. Gao, Y., Sun, B. and Lu, G. (2013). Modified function projective lag synchronization of chaotic systems with disturbance estimations, Applied Mathematical Modelling 37(7): 4993-5000.10.1016/j.apm.2012.09.058
  14. Grzybowski, J., Rafikov, M. and Balthazar, J. (2009). Synchronization of the unified chaotic system and application in secure communication, Communications in Nonlinear Science and Numerical Simulation 14(6): 2793-2806.10.1016/j.cnsns.2008.09.028
  15. Haimo, V. (1986). Finite time controllers, SIAMJournal on Control and Optimization 24(4): 760-770.10.1137/0324047
  16. Hramov, A. and Koronovskii, A. (2004). An approach to chaotic synchronization, Chaos: An Interdisciplinary Journal of Nonlinear Science 14(3): 603-610.10.1063/1.177599115446970
  17. Kaczorek, T. (2016). Reduced-order fractional descriptor observers for a class of fractional descriptor continuous-time nonlinear systems, International Journal of Applied Mathematics and Computer Science 26(2): 277-283, DOI:10.1515/amcs-2016-0019.10.1515/amcs-2016-0019
  18. Kim, C.M., Rim, S., Kye,W.H., Ryu, J.W. and Park, Y.J. (2003). Anti-synchronization of chaotic oscillators, Physics Letters A 320(1): 39-46.10.1016/j.physleta.2003.10.051
  19. Lee, S., Ji, D., Park, J. and Won, S. (2008). H∞ synchronization of chaotic systems via dynamic feedback approach, Physics Letters A 374(17-18): 1900-1900.10.1016/j.physleta.2010.02.051
  20. Li, Q. and Liu, S. (2017). Dual-stage adaptive finite-time modified function projective multi-lag combined synchronization for multiple uncertain chaotic systems, Open Mathematics 15(1): 1035-1047.10.1515/math-2017-0087
  21. Liu, L., Cao, X., Fu, Z., Song, S. and Xing, H. (2018). Finite-time control of uncertain fractional-order positive impulsive switched systems with mode-dependent average D-well time, Circuits, Systems, and Signal Processing 37(9): 3739-3755, DOI: 10.1007/s00034-018-0752-5.10.1007/s00034-018-0752-5
  22. Liu, L., Fu, Z., Cai, X. and Song, X. (2013a). Non-fragile sliding mode control of discrete singular systems, Communications in Nonlinear Science and Numerical Simulation 18(3): 735-743.10.1016/j.cnsns.2012.08.014
  23. Liu, L., Fu, Z. and Song, X. (2013b). Passivity-based sliding mode control for a polytopic stochastic differential inclusion system, ISA Transactions 52(6): 775-780.10.1016/j.isatra.2013.07.01423958489
  24. Liu, L., Pu, J., Song, X., Fu, Z. and Wang, X. (2014). Adaptive sliding mode control of uncertain chaotic systems with input nonlinearity, Nonlinear Dynamics 76(4): 1857-1865.10.1007/s11071-013-1163-6
  25. Liu, L., Song, X. and Li, X. (2012). Adaptive exponential synchronization of chaotic recurrent neural networks with stochastic perturbation, IEEE International Conference on Automation and Logistics, Zhengzhou, China, pp. 332-336.10.1109/ICAL.2012.6308232
  26. Lu, J., Ho, D.W. and Cao, J. (2010). A unified synchronization criterion for impulsive dynamical networks, Automatica 46(7): 1215-1221.10.1016/j.automatica.2010.04.005
  27. Luo, R. and Wang, Y. (2012). Finite-time stochastic combination synchronization of three different chaotic systems and its application in secure communication, Chaos 22(2): 023109.10.1063/1.370286422757516
  28. Luo, R., Wang, Y. and Deng, S. (2011). Combination synchronization of three classic chaotic systems using active backstepping design, Chaos 21(4): 043114.10.1063/1.365536622225351
  29. Mainieri, R. and Rehacek, J. (1999). Projective synchronization in three-dimensional chaotic systems, Physical Review Letters 82(15): 3042-3045.10.1103/PhysRevLett.82.3042
  30. Mu, X. and Chen, Y. (2016). Synchronization of delayed discrete-time neural networks subject to saturated time-delay feedback, Neurocomputing 175(A): 293-299.10.1016/j.neucom.2015.10.062
  31. Park, E., Zaks, M. and Kurths, J. (1999). Phase synchronization in the forced Lorenz system, Physics Review E 60(6A): 6627-6638.10.1103/PhysRevE.60.6627
  32. Pecora, L. and Carroll, T. (1990). Synchronization in chaotic systems, Physical Review Letters 06(08): 821-824.10.1103/PhysRevLett.64.82110042089
  33. Rosenblum, M.G., Pikovsky, A.S. and Kurths, J. (1997). From phase to lag synchronization in coupled chaotic oscillators, Physical Review Letters 44(78): 4193-4196.10.1103/PhysRevLett.78.4193
  34. Song, Q., Cao, J. and Liu, F. (2010). Synchronization of complex dynamical networks with nonidentical nodes, Physics Letters A 374(4): 544-551.10.1016/j.physleta.2009.11.032
  35. Srinivasarengan, K., Ragot, J., Aubrun, C. and Maquin, D. (2018). An adaptive observer design approach for discrete-time nonlinear systems, International Journal of Applied Mathematics and Computer Science 28(1): 55-67, DOI: 10.2478/amcs-2018-0004.10.2478/amcs-2018-0004
  36. Sudheer, K.S. and Sabir, M. (2011). Adaptive modified function projective synchronization of multiple time-delayed chaotic Rossler system, Physics Letters A 375(8): 1176-1178.10.1016/j.physleta.2011.01.028
  37. Sun, J., Shen, Y. and Cui, G. (2015). Compound synchronization of four chaotic complex systems, Advances in Mathematical Physics 2015(A): 1-11, DOI: 10.1155/2015/921515.10.1155/2015/921515
  38. Sun, J., Shen, Y., Wang, X. and Chen, J. (2014). Finite-time combination-combination synchronization of four different chaotic systems with unknown parameters via sliding mode control, Nonlinear Dynamics 76(1): 383-397.10.1007/s11071-013-1133-z
  39. Wang, B. and Wen, G. (2007). On the synchronization of a class of chaotic systems based on back-stepping method, Physics Letters A 370(1): 35-39.10.1016/j.physleta.2007.05.030
  40. Wang, F. and Liu, C. (2007). Synchronization of unified chaotic system based on passive control, Physica D: Nonlinear Phenomena 225(1): 55-60.10.1016/j.physd.2006.09.038
  41. Wang, H., Han, Z.Z., Xie, Q.Y. and Zhang, W. (2009). Finite-time chaos control via nonsingular terminal sliding mode control, Communications in Nonlinear Science and Numerical Simulation 14(6): 2728-2733.10.1016/j.cnsns.2008.08.013
  42. Wang, S., Zheng, S., Zhang, B. and Cao, H. (2016). Modified function projective lag synchronization of uncertain complex networks with time-varying coupling strength, Optik-International Journal for Light and Electron Optics 127(11): 4716-4725.10.1016/j.ijleo.2016.01.085
  43. Wang, X. and Wei, N. (2015). Modified function projective lag synchronization of hyper chaotic complex systems with parameter perturbations and external perturbations, Journal of Vibration and Control 21(16): 3266-3280.10.1177/1077546314521263
  44. Wen, G. and Xu, D. (2005). Nonlinear observer control for full-state projective synchronization in chaotic continuous-time systems, Chaos Solitons and Fractals 26(1): 71-77.10.1016/j.chaos.2004.09.117
  45. Xia, J., Gao, H., Liu, M., Zhuang, G. and Zhang, B. (2018). Non-fragile finite-time extended dissipative control for a class of uncertain discrete time switched linear systems, Journal of the Franklin Institute 355(6): 3031-3049.10.1016/j.jfranklin.2018.02.017
  46. Xu, Y., Zhou, W., Fang, J., Xie, C. and Tong, D. (2016). Finite-time synchronization of the complex dynamical network with nonderivative and derivative coupling, Neurocomputing 173(1): 1356-1361.10.1016/j.neucom.2015.09.008
  47. Yang, S. and Duan, C. (1998). Generalized synchronization in chaotic systems, Chaos Solitons and Fractals 9(10): 1703-1707.10.1016/S0960-0779(97)00149-5
  48. Yu, H. and Liu, Y. (2003). Chaotic synchronization based on stability criterion of linear systems, Physics Letters A 314(4): 292-298.10.1016/S0375-9601(03)00908-3
  49. Yu, X. and Man, Z. (2002). Fast terminal sliding-mode control design for nonlinear dynamical systems, IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications 49(2): 261-264.10.1109/81.983876
DOI: https://doi.org/10.2478/amcs-2018-0047 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 613 - 624
Submitted on: Oct 11, 2017
Accepted on: Apr 10, 2018
Published on: Jan 11, 2019
Published by: University of Zielona Góra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2019 Qiaoping Li, Sanyang Liu, Yonggang Chen, published by University of Zielona Góra
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.