Have a personal or library account? Click to login
On Hyper–Regularity and Unimodularity of Ore Polynomial Matrices Cover
Open Access
|Oct 2018

References

  1. Antritter, F., Cazaurang, F., Lévine, J. and Middeke, J. (2014). On the computation of π-flat outputs for linear time-varying differential-delay systems, Systems & Control Letters 71: 14-22.10.1016/j.sysconle.2014.07.002
  2. Antritter, F. and Middeke, J. (2011). A toolbox for the analysis of linear systems with delays, Proceedings of CDC-ECC, Orlando, FL, USA, pp. 1950-1955.10.1109/CDC.2011.6160636
  3. Beckermann, B., Cheng, H. and Labahn, G. (2006). Fraction-free row reduction of matrices of Ore polynomials, Journal of Symbolic Computation 41(5): 513-543.10.1016/j.jsc.2005.10.002
  4. Ben-Israel, A. and Greville, T.N. (2003). Generalized Inverses: Theory and Applications, Springer, New York, NY.
  5. Bose, N.K. and Mitra, S.K. (1978). Generalized inverse of polynomial matrices, IEEE Transactions on Automatic Control 23(3): 491-493.10.1109/TAC.1978.1101751
  6. Boullion, T.L. and Odell, P.L. (1971). Generalized Inverse Matrices, Wiley, New York, NY.
  7. Campbell, S.L. and Meyer, C.D. (2008). Generalized Inverses of Linear Transformations, SIAM, London.10.1137/1.9780898719048
  8. Cluzeau, T. and Quadrat, A. (2013). Isomorphisms and Serre’s reduction of linear systems, Proceedings of the 8th International Workshop on Multidimensional Systems, Erlangen, Germany, pp. 11-16.
  9. Cohn, P. (1985). Free Rings and Their Relations, Academic Press, London.
  10. Davies, P., Cheng, H. and Labahn, G. (2008). Computing Popov form of general Ore polynomial matrices, Proceedings of the Conference on Milestones in Computer Algebra (MICA), Stonehaven Bay, Trinidad and Tobago, pp. 149-156.
  11. Fabianska, A. and Quadrat, A. (2007). Applications of the Quillen-Suslin theorem to multidimensional systems theory, in H. Park and G. Regensburger (Eds.), Grӧbner Bases in Control Theory and Signal Processing, De Gruyter, Berlin/New York, NY, pp. 23-106.10.1515/9783110909746.23
  12. Franke, M. and Rӧbenack, K. (2013). On the computation of flat outputs for nonlinear control systems, Proceedings of the European Control Conference (ECC), Z¨urich, Switzerland, pp. 167-172.10.23919/ECC.2013.6669771
  13. Fritzsche, K. (2018). Toolbox for checking hyper regularity and unimodularity of polynomial matrices in the differential operator d/dt, https://github.com/klim-/hypore.10.2478/amcs-2018-0045
  14. Fritzsche, K., Knoll, C., Franke, M. and R¨obenack, K. (2016). Unimodular completion and direct flat representation in the context of differential flatness, Proceedings in Applied Mathematics and Mechanics 16(1): 807-808.10.1002/pamm.201610392
  15. Gupta, R.N., Khurana, A., Khurana, D. and Lam, T.Y. (2009). Rings over which the transpose of every invertible matrix is invertible, Journal of Algebra 322(5): 1627-1636.10.1016/j.jalgebra.2009.05.029
  16. Jacobson, N. (1953). Lectures in Abstract Algebra II: Linear Algebra, Springer, New York, NY.10.1007/978-1-4684-7053-6
  17. Knoll, C. (2016). Regelungstheoretische Analyse- und Entwurfsans ¨atze f¨ur unteraktuierte mechanische Systeme, PhD thesis, TU Dresden, Dresden.
  18. Knoll, C. and Fritzsche, K. (2017). Symbtools: A toolbox for symbolic calculations in nonlinear control theory, DOI: 10.5281/zenodo.275073.10.5281/zenodo.275073
  19. Kondratieva, M.V., Mikhalev, A.V. and Pankratiev, E.V. (1982). On Jacobi’s bound for systems of differential polynomials, Algebra, Moscow University Press, Moscow, pp. 79-85.
  20. Lam, T. (1978). Serre’s Conjecture, Springer, Berlin/Heidelberg.
  21. Lévine, J. (2011). On necessary and sufficient conditions for differential flatness, Applicable Algebra in Engineering, Communication and Computing 22(1): 47-90.10.1007/s00200-010-0137-x
  22. Logar, A. and Sturmfels, B. (1992). Algorithms for the Quillen-Suslin theorem, Journal of Algebra 145(1): 231-239.10.1016/0021-8693(92)90189-S
  23. Meurer, A., Smith, C., Paprocki, M., ˇ Cert´ık, O., Kirpichev, S., Rocklin, M., Kumar, A., Ivanov, S., Moore, J., Singh, S., Rathnayake, T., Vig, S., Granger, B., Muller, R., Bonazzi, F., Gupta, H., Vats, S., Johansson, F., Pedregosa, F., Curry, M., Terrel, A., Rouˇcka, v., Saboo, A., Fernando, I., Kulal, S., Cimrman, R. and Scopatz, A. (2017). SymPY: Symbolic computing in Python, PeerJ Computer Science 3: e103, DOI: 10.7717/peerj-cs.103.10.7717/peerj-cs.103
  24. Middeke, J. (2011). A Computational View on Normal Forms of Matrices of Ore Polynomials, PhD thesis, Johannes Kepler Universit¨at Linz, Linz.
  25. Newman, M. (1972). Integral Matrices, Academic Press, New York, NY/London.
  26. Ollivier, F. (1990). Standard bases of differential ideals, Proceedings of the 8th International Conference on Applied Algebra, Algebraic Algorithms and Error-Correcting10.1007/3-540-54195-0_60
  27. Codes, Tokyo, Japan, pp. 304-321. Ollivier, F. and Brahim, S. (2007). La borne de Jacobi pour une diffi´et´e d´efinie par un syst`eme quasi r´egulier (Jacobi’s bound for a diffiety defined by a quasi-regular system), Comptes rendus Math´ematiques 345(3): 139-144.10.1016/j.crma.2007.06.010
  28. Ritt, J.F. (1935). Jacobi’s problem on the order of a system of differential equations, Annals of Mathematics 36(2): 303-312.10.2307/1968572
  29. Rӧbenack, K. and Reinschke, K. (2011). On generalized inverses of singular matrix pencils, International Journal of Applied Mathematics and Computer Science 21(1): 161-172, DOI: 10.2478/v10006-011-0012-3.10.2478/v10006-011-0012-3
  30. Verhoeven, G.G. (2016). Symbolic Software Tools for Flatness of Linear Systems with Delays and Nonlinear Systems, PhD thesis, Universit¨at der Bundeswehr M¨unchen, Munich.
  31. Youla, D. and Pickel, P. (1984). The Quillen-Suslin theorem and the structure of n-dimensional elementary polynomial matrices, IEEE Transactions on Circuits and Systems 31(6): 513-518.10.1109/TCS.1984.1085545
  32. Zhou, W. and Labahn, G. (2014). Unimodular completion of polynomial matrices, Proceedings of the 41st International Symposium on Symbolic and Algebraic Computation (ISSAC), Kobe, Japan, pp. 414-420.10.1145/2608628.2608640
DOI: https://doi.org/10.2478/amcs-2018-0045 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 583 - 594
Submitted on: Aug 18, 2017
Accepted on: Apr 26, 2018
Published on: Oct 3, 2018
Published by: University of Zielona Góra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2018 Klemens Fritzsche, Klaus Rӧbenack, published by University of Zielona Góra
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.