Have a personal or library account? Click to login
Regression Function and Noise Variance Tracking Methods for Data Streams with Concept Drift Cover

Regression Function and Noise Variance Tracking Methods for Data Streams with Concept Drift

By: Maciej Jaworski  
Open Access
|Oct 2018

References

  1. Alippi, C., Boracchi, G. and Roveri, M. (2017). Hierarchical change-detection tests, IEEE Transactions on Neural Networks and Learning Systems 28(2): 246-258.10.1109/TNNLS.2015.251271426800551
  2. Andrzejewski, W., Gramacki, A. and Gramacki, J. (2013). Graphics processing units in acceleration of bandwidth selection for kernel density estimation, International Journal of Applied Mathematics and Computer Science 23(4): 869-885, DOI: 10.2478/amcs-2013-0065.10.2478/amcs-2013-0065
  3. Bifet, A., Holmes, G., Kirkby, R. and Pfahringer, B. (2010). MOA: Massive online analysis, Journal of Machine Learning Research 11: 1601-1604.
  4. Brown, L.D. and Levine, M. (2007). Variance estimation in nonparametric regression via the difference sequence method, Annals of Statistics 35(5): 2219-2232.10.1214/009053607000000145
  5. Carroll, R.J. and Ruppert, D. (1988). Transformation and Weighting in Regression, CRC Press, Boca Raton, FL.10.1007/978-1-4899-2873-3
  6. Dai, W., Ma, Y., Tong, T. and Zhu, L. (2015). Difference-based variance estimation in nonparametric regression with repeated measurement data, Journal of Statistical Planning and Inference 163: 1-20.10.1016/j.jspi.2015.02.010
  7. Diggle, P.J. and Verbyla, A.P. (1998). Nonparametric estimation of covariance structure in longitudinal data, Biometrics 54(2): 401-415.10.2307/3109751
  8. Ditzler, G., Roveri, M., Alippi, C. and Polikar, R. (2015). Learning in nonstationary environments: A survey, IEEE Computational Intelligence Magazine 10(4): 12-25.10.1109/MCI.2015.2471196
  9. Domingos, P. and Hulten, G. (2000). Mining high-speed data streams, Proceedings of the 6th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Boston, MA, USA, pp. 71-80.10.1145/347090.347107
  10. Duda, P., Jaworski, M. and Rutkowski, L. (2017). Knowledge discovery in data streams with the orthogonal series-based generalized regression neural networks, Information Sciences 460-461: 497-518.10.1016/j.ins.2017.07.013
  11. Duda, P., Jaworski, M. and Rutkowski, L. (2018). Convergent time-varying regression models for data streams: Tracking concept drift by the recursive Parzen-based generalized regression neural networks, International Journal of Neural Systems 28(02): 1750048.10.1142/S012906571750048429129128
  12. Epanechnikov, V.A. (1969). Non-parametric estimation of a multivariate probability density, Theory of Probability & Its Applications 14(1): 153-158.10.1137/1114019
  13. Fan, J. and Yao, Q. (1998). Efficient estimation of conditional variance functions in stochastic regression, Biometrika 85(3): 645-660.10.1093/biomet/85.3.645
  14. Gama, J., Zliobaite, I., Bifet, A., Pechenizkiy, M. and Bouchachia, A. (2014). A survey on concept drift adaptation, ACM Computing Surveys (CSUR) 46(4): 44:1-44:37.10.1145/2523813
  15. Gasser, T., Kneip, A. and Köhler, W. (1991). A flexible and fast method for automatic smoothing, Journal of the American Statistical Association 86(415): 643-652.10.1080/01621459.1991.10475090
  16. Gasser, T., Sroka, L. and Jennen-Steinmetz, C. (1986). Residual variance and residual pattern in nonlinear regression, Biometrika 73(3): 625-633.10.1093/biomet/73.3.625
  17. Greblicki, W. (1974). Asymptotically Optimal Algorithms of Recognition and Identification in Probabilistic Conditions, BI Wrocław University of Technology, Wrocław, (in Polish).
  18. Greblicki, W. and Pawlak, M. (2008). Nonparametric System Identification, Cambridge University Press, Cambridge.10.1017/CBO9780511536687
  19. Györfi, L., Kohler, M., Krzyzak, A. and Walk, H. (2002). A Distribution-Free Theory of Nonparametric Regression, Springer, New York, NY.10.1007/b97848
  20. Hall, P. and Carroll, R.J. (1989). Variance function estimation in regression: The effect of estimating the mean, Journal of the Royal Statistical Society: Series B (Methodological) 51(1): 3-14.10.1111/j.2517-6161.1989.tb01744.x
  21. Hart, J. (1997). Nonparametric Smoothing and Lack-of-Fit Tests, Springer, New York, NY.10.1007/978-1-4757-2722-7
  22. Jaworski, M., Duda, P. and Rutkowski, L. (2017). New splitting criteria for decision trees in stationary data streams, IEEE Transactions on Neural Networks and Learning Systems PP(99): 1-14.
  23. Krzyzak, A. and Pawlak, M. (1984). Almost everywhere convergence of a recursive regression function estimate and classification, IEEE Transactions on Information Theory 30(1): 91-93.10.1109/TIT.1984.1056833
  24. Krzyzak, A. and Pawlak, M. (1987). The pointwise rate of convergence of the kernel regression estimate, Journal of Statistical Planning and Inference 16: 159-166.10.1016/0378-3758(87)90065-6
  25. Mzyk, G. (2007). Generalized kernel regression estimate for the identification of Hammerstein systems, International Journal of Applied Mathematics and Computer Science 17(2): 189-197, DOI: 10.2478/v10006-007-0018-z.10.2478/v10006-007-0018-z
  26. Nikulin, V. (2016). Prediction of the shoppers loyalty with aggregated data streams, Journal of Artificial Intelligence and Soft Computing Research 6(2): 69-79.10.1515/jaiscr-2016-0007
  27. Parzen, E. (1962). On estimation of probability density function and mode, Annals of Mathematical Statistics 33: 1065-1076.10.1214/aoms/1177704472
  28. Pietruczuk, L., Rutkowski, L., Jaworski,M. and Duda, P. (2014). The Parzen kernel approach to learning in non-stationary environment, Proceedings of the International Joint Conference on Neural Networks (IJCNN), Beijing, China, pp. 3319-3323.10.1109/IJCNN.2014.6889805
  29. Pietruczuk, L., Rutkowski, L., Jaworski,M. and Duda, P. (2017). How to adjust an ensemble size in stream data mining?, Information Sciences 381: 46-54.10.1016/j.ins.2016.10.028
  30. Rafajlowicz, E. (1987). Nonparametric orthogonal series estimators of regression: A class attaining the optimal convergence rate in L2, Statistics and Probability Letters 5(3): 219-224.10.1016/0167-7152(87)90044-7
  31. Rafajlowicz, E. (1989). Reduction of distributed system identification complexity using intelligent sensors, International Journal of Control 50(5): 1571-1576.10.1080/00207178908953451
  32. Rao, B.P. (2014). Nonparametric Functional Estimation, Academic Press, Cambridge, MA. Ruppert, D., Wand, M.P., Holst, U. and Hössjer, O. (1997). Local polynomial variance-function estimation, Technometrics 39(3): 262-273.10.1080/00401706.1997.10485117
  33. Rutkowski, L. (2004). Generalized regression neural networks in time-varying environment, IEEE Transactions on Neural Networks 15: 576-596.10.1109/TNN.2004.82612715384547
  34. Rutkowski, L. and Galkowski, T. (1994). On pattern classification and system identification by probabilistic neural networks, International Journal of Applied Mathematics and Computer Science 4(3): 413-422.
  35. Rutkowski, L., Jaworski, M., Pietruczuk, L. and Duda, P. (2015). A new method for data stream mining based on the misclassification error, IEEE Transactions on Neural Networks and Learning Systems 26(5): 1048-1059.10.1109/TNNLS.2014.233355725051560
  36. Rutkowski, L., Pietruczuk, L., Duda, P. and Jaworski, M. (2013). Decision trees for mining data streams based on theMcDiarmid’s bound, IEEE Transactions on Knowledge and Data Engineering 25(6): 1272-1279.10.1109/TKDE.2012.66
  37. Shaker, A. and Hüllermeier, E. (2014). Survival analysis on data streams: Analyzing temporal events in dynamically changing environments, International Journal of Applied Mathematics and Computer Science 24(1): 199-212, DOI: 10.2478/amcs-2014-0015.10.2478/amcs-2014-0015
  38. Shen, H. and Brown, L.D. (2006). Non-parametric modelling of time-varying customer service times at a bank call centre, Applied Stochastic Models in Business and Industry 22(3): 297-311.10.1002/asmb.618
  39. von Neumann, J. (1941). Distribution of the ratio of the mean square successive difference to the variance, Annals Mathematic of Statistics 12(4): 367-395.10.1214/aoms/1177731677
  40. Wang, H., Fan, W., Yu, P.S. and Han, J. (2003). Mining concept-drifting data streams using ensemble classifiers, Proceedings of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD’03, Washington, DC, USA, pp. 226-235.10.1145/956750.956778
  41. Weinberg, A.I. and Last, M. (2017). Interpretable decision-tree induction in a big data parallel framework, International Journal of Applied Mathematics and Computer Science 27(4): 737-748, DOI: 10.1515/amcs-2017-0051.10.1515/amcs-2017-0051
  42. Zliobaite, I., Bifet, A., Pfahringer, B. and Holmes, G. (2014). Active learning with drifting streaming data, IEEE Transactions on Neural Networks and Learning Systems 25(1): 27-39.10.1109/TNNLS.2012.223657024806642
DOI: https://doi.org/10.2478/amcs-2018-0043 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 559 - 567
Submitted on: Feb 16, 2018
Accepted on: May 4, 2018
Published on: Oct 3, 2018
Published by: University of Zielona Góra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2018 Maciej Jaworski, published by University of Zielona Góra
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.