Have a personal or library account? Click to login
Linguistically Defined Clustering of Data Cover

References

  1. Chang, H. and Yeung, D. (2008). Robust path-based spectral clustering, Pattern Recognition 41(1): 191-203.10.1016/j.patcog.2007.04.010
  2. Comaniciu, D. and Meer, P. (2002). Mean shift: A robust approach toward feature space analysis, IEEE Transactions on Pattern Analysis and Machine Intelligence 24(5): 603-619.10.1109/34.1000236
  3. Duda, R., Hart, P. and Stork, D. (2001). Pattern Classification, Wiley, New York, NY.
  4. Ester, M., Kriegiel, H.-P., Sander, J. and Xu, X. (1996). A density-based algorithm for discovering clusters in large spatial databases with noise, Proceedings of the 2nd International Conference on Knowledge Discovery and Data
  5. Mining, KDDM 1996, Portland, OR, USA, pp. 226-231. Everitt, B., Landau, S., Leese, M. and Stahl, D. (2011). Cluster Analysis, 5th Edn., Wiley, London.
  6. Fu, L. and Medico, E. (2007). Flame, a novel fuzzy clustering method for the analysis of DNA microarray data, BMC Bioinformatics 8(3): 1-15.10.1186/1471-2105-8-3177457917204155
  7. Fukunaga, K. and Hostetler, L. (1975). The estimation of the gradient of a density function, with application to pattern recognition, IEEE Transactions on Information Theory 21(1): 32-40.10.1109/TIT.1975.1055330
  8. Gionis, A., Mannila, H. and Tsaparas, P. (2007). Clustering aggregation, ACM Transactions on Knowledge Discovery From Data 1(1): 1-30.10.1145/1217299.1217303
  9. Jain, A. and Law, M. (2005). Data clustering: A user’s dilemma, in S.K. Pal et al. (Eds.), Pattern Recognition and Machine Intelligence, Lecture Notes in Computer Science, Vol. 3776, Springer, New York, NY, pp. 1-10.10.1007/11590316_1
  10. Jain, A., Murty, M. and Flynn, P. (1999). Data clustering: A review, ACM Computing Surveys 31(3): 264-323.10.1145/331499.331504
  11. Király, A., Vathy-Fogarassy, A. and Abonyi, J. (2016). Geodesic distance based fuzzy c-medoid clustering searching for central points in graphs and high dimensional data, Fuzzy Sets and Systems 286(1): 157-172.10.1016/j.fss.2015.06.022
  12. Leski, J. (2015). Fuzzy (c + p)-means clustering and its application to a fuzzy rule-based classifier: Towards good generalization and good interpretability, IEEE Transactions on Fuzzy Systems 23(4): 802-812.10.1109/TFUZZ.2014.2327995
  13. Leski, J. (2016). Fuzzy c-ordered-means clustering, Fuzzy Sets and Systems 286(1): 114-133.10.1016/j.fss.2014.12.007
  14. Leski, J. and Kotas, M. (2015). On robust fuzzy c-regression models, Fuzzy Sets and Systems 279(1): 112-129. Nguyen, S. and Choi, S.-B. (2015). Design of a new adaptive neuro-fuzzy inference system based on a solution for clustering in a data potential field, Fuzzy Sets and Systems 279(1): 64-86.10.1016/j.fss.2014.12.004
  15. Pancerz, K., Lewicki, A. and Tadeusiewicz, R. (2015). Ant-based extraction of rules in simple decision systems over ontological graphs, International Journal of Applied Mathematics and Computer Science 25(2): 377-387, DOI: 10.1515/amcs-2015-0029.10.1515/amcs-2015-0029
  16. Pedrycz, W., Al-Hmouz, R., Balamash, A. and Morfeq, A. (2015). Hierarchical granular clustering: An emergence of information glanules of higher type and higher order, IEEE Transactions on Fuzzy Systems 23(6): 2270-2283.10.1109/TFUZZ.2015.2417896
  17. Ripley, B. (1996). Pattern Recognition and Neural Networks, Cambridge University Press, Cambridge.10.1017/CBO9780511812651
  18. Rodriguez, A. and Laio, A. (2014). Clustering by fast search and find of density peaks, Science 344(6191): 1492-1496.10.1126/science.1242072
  19. Tou, J. and Gonzalez, R. (1974). Pattern Recognition Principles, Addison-Wesley, London.
  20. Veenman, C., Reinders, M. and Backer, E. (2002). A maximum variance cluster algorithm, IEEE Transactions on Pattern Analysis and Machine Intelligence 24(9): 1273-1280.10.1109/TPAMI.2002.1033218
  21. Webb, A. (1999). Statistical Pattern Recognition, Arnold, London.
  22. Yager, R. and Filev, D. (1999). Induced ordered weighted averaging operators, IEEE Transactions on Systems, Man and Cybernetics: Cybernetics 29(2): 141-150.10.1109/3477.752789
  23. Zadeh, L. (1965). Fuzzy sets, Information and Control 8(1): 338-353.10.1016/S0019-9958(65)90241-X
  24. Zadeh, L. (1978). Fuzzy sets as a basis for a theory of possibility, Fuzzy Sets and Systems 1(1): 2-28.10.1016/0165-0114(78)90029-5
  25. Zahn, C. (1971). Graph-theoretical methods for detecting and describing gestalt clusters, IEEE Transactions on Computers 1(1): 68-86.10.1109/T-C.1971.223083
  26. Zaki,M. and Meira,W. (2014). Data Mining and Analysis: Fundamental Concepts and Algorithms, Cambridge University Press, New York, NY.10.1017/CBO9780511810114
  27. Zok, T., Antczak, M., Riedel, M., Nebel, D., Villmann, T., Lukasiak, P., Blazewicz, J. and Szachniuk, M. (2015). Building the library of RNA 3D nucleotide conformations using the clustering approach, International Journal of Applied Mathematics and Computer Science 25(3): 689-700, DOI: 10.1515/amcs-2015-0050.10.1515/amcs-2015-0050
DOI: https://doi.org/10.2478/amcs-2018-0042 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 545 - 557
Submitted on: Jul 17, 2017
Accepted on: Apr 16, 2018
Published on: Oct 3, 2018
Published by: University of Zielona Góra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2018 Jacek M. Leski, Marian P. Kotas, published by University of Zielona Góra
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.