Have a personal or library account? Click to login
Robust Controlled Positive Delayed Systems with Interval Parameter Uncertainties: A Delay Uniform Decomposition Approach Cover

Robust Controlled Positive Delayed Systems with Interval Parameter Uncertainties: A Delay Uniform Decomposition Approach

Open Access
|Oct 2018

References

  1. Araki, M. (1975). Application of m-matrices to the stability problems of composite dynamical systems, Journal of Mathematical Analysis and Applications 52(2): 309-321.10.1016/0022-247X(75)90099-2
  2. Bolajraf, M. (2012). Robust Control and Estimation for Positive Systems, Valladolid University, Valladolid.
  3. Chen, X., Chen, M. and Shen, J. (2017). A novel approach to l1-induced controller synthesis for positive systems with interval uncertainties, Journal of The Franklin Institute 354(8): 3364-3377.10.1016/j.jfranklin.2017.02.039
  4. Elloumi, W., Mehdi, D., Chaabane, M. and Hashim, G. (2015). Exponential stability criteria for positive systems with time-varying delay: A delay decomposition technique, Circuits, Systems and Signal Processing 35(5): 1545-1561.10.1007/s00034-015-0121-6
  5. Farina, L. and Rinaldi, S. (2000). Positive Linear Systems: Theory and Applications, Wiley, New York, NY.10.1002/9781118033029
  6. Hale, J. and Lunel, S.M.V. (1993). Introduction to Functional Differential Equations, Springer, New York, NY.10.1007/978-1-4612-4342-7
  7. Hmamed, A., Rami, M.A., Benzaouia, A. and Tadeo, F. (2012). Stabilization under constrained states and controls of positive systems with time delays, Mechanical Systems and Signal Processing 18(2): 182-190.10.3166/ejc.18.182-190
  8. Junfeng, Z., Xianglei, J., Ridong, Z. and Shizhou, F. (2017). Parameter-dependent Lyapunov function based model predictive control for positive systems and its application in urban water management, Control Conference (CCC), Dalian, China.10.23919/ChiCC.2017.8028077
  9. Kaczorek, T. (2014). Minimum energy control of fractional positive continuous-time linear systems with bounded inputs, International Journal of Applied Mathematics and Computer Science 24(2): 335-340, DOI: 10.2478/amcs-2014-0025.10.2478/amcs-2014-0025
  10. Kaczorek, T. (2016). Positivity and stability of fractional descriptor time-varying discrete-time linear systems, International Journal of Applied Mathematics and Computer Science 26(1): 5-13, DOI: 10.1515/amcs-2016-0001.10.1515/amcs-2016-0001
  11. Luenberger, D.G. (1976). Introduction to Dynamic Systems: Theory, Models and Applications, Academic Press, New York, NY.
  12. Mesquine, F., Hmamed, A., Benhayoun, M., Benzaouiaa, A.and Tadeo, F. (2015). Robust stabilization of constrained uncertain continuous-time fractional positive systems, Journal of The Franklin Institute 352(1): 259-270.10.1016/j.jfranklin.2014.10.023
  13. Rami, M.A. (2011). Solvability of static output-feedback stabilization for LTI positive systems, Systems & Control Letters 60(9): 704-708.10.1016/j.sysconle.2011.05.007
  14. Rami, M.A., Tadeo, F. and Benzaouia, A. (2007). Control of constrained positive discrete systems, Proceedings of the American Control Conference, New York, NY, USA, pp. 5851-5856.10.1109/ACC.2007.4282448
  15. Shorten, R., Wirth, F. and Leith, D. (2006). A positive systems model of TCP-like congestion control: Asymptotic results, IEEE Transactions on Networking 14(2): 616-629.10.1109/TNET.2006.876178
  16. Shuqian, Z., Han, Q.-L. and Zhang, C. (2014). l1-gain performance analysis and positive filter design for positive discrete-time Markov jump linear systems: A linear programming approach, Automatica 50(8): 2098-2107.10.1016/j.automatica.2014.05.022
  17. Zaidi, I. (2015). Robust Stabilization and Observation for Positive Takagi-Sugeno systems, PhD thesis, Valladolid University, Valladolid.
  18. Zaidi, I., Chaabane, M., Tadeo, F. and Benzaouia, A. (2014). Static state feedback controller and observer design for interval positive systems with time-delay, IEEE Transactions on Circuits and Systems II 62(5): 506-510.10.1109/TCSII.2014.2385391
  19. Zhang, Z. and Yang, H. (2013). Stability and Hopf bifurcation in a three-species food chain system with harvesting and two delays, Journal of Computational and Nonlinear Dynamics 9(2), Paper no.: CND-12-1233.10.1115/1.4025670
  20. Zhu, S., Han, Q.-L. and Zhang, C. (2016). Investigating the effects of time-delays on stochastic stability and designing l1-gain controllers for positive discrete-time Markov jump linear systems with time-delay, Information Sciences 355(C): 265-281.10.1016/j.ins.2016.03.044
  21. Zhu, S., Han, Q.-L. and Zhang, C. (2017). l1-Stochastic stability and l1-gain performance of positive Markov jump linear systems with time-delays: Necessary and sufficient conditions, IEEE Transactions on Automatic Control 62(7): 3634-3639.10.1109/TAC.2017.2671035
  22. Zhu, S., Meng, M. and Zhang, C. (2013). Exponential stability for positive systems with bounded time-varying delays and static output feedback stabilization, Journal of The Franklin Institute 350(3): 617-636.10.1016/j.jfranklin.2012.12.022
DOI: https://doi.org/10.2478/amcs-2018-0033 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 441 - 450
Submitted on: May 6, 2017
Accepted on: Apr 7, 2018
Published on: Oct 3, 2018
Published by: University of Zielona Góra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2018 Wafa Elloumi, Driss Mehdi, Mohamed Chaabane, published by University of Zielona Góra
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.