Have a personal or library account? Click to login
Quadratic Performance Analysis of Switched Affine Time–Varying Systems Cover

Quadratic Performance Analysis of Switched Affine Time–Varying Systems

By: Wenzhi Li,  Chi Huang and  Guisheng Zhai  
Open Access
|Oct 2018

References

  1. Allerhand, L.I. and Shaked, U. (2011). Robust stability and stabilization of linear switched systems with dwell time, IEEE Transactions on Automatic Control 56(2): 381-386.10.1109/TAC.2010.2097351
  2. Bolzern, P. and Spinelli, W. (2004). Quadratic stabilization of as witched affine system about a nonequilibrium point, Proceedings of the American Control Conference, Boston, MA, USA, pp. 3890-3895.10.23919/ACC.2004.1383918
  3. Branicky, M.S. (1998). Multiple Lyapunov functions and other analysis tools for switched and hybrid systems, IEEE Transactions on Automatic Control 43(4): 475-482.10.1109/9.664150
  4. Deaecto, G.S. (2016). Dynamic output feedback H∞ control of continuous-time switched affine systems, Automatica 71(1): 44-49.10.1016/j.automatica.2016.04.022
  5. Deaecto, G.S. and Santos, G.C. (2015). State feedback H∞ control design of continuous-time switched affine systems, IET Control Theory & Applications 9(10): 1511-1516.10.1049/iet-cta.2014.0153
  6. DeCarlo, R., Branicky, M.S., Pettersson, S. and Lennartson, B. (2000). Perspectives and results on the stability and stabilizability of hybrid systems, Proceedings of the IEEE 88(7): 1069-1082.10.1109/5.871309
  7. Feron, E. (1996). Quadratic stability of switched systems via state and output feedback, MIT Technical Reports CICSP- 468, MIT, Cambridge, MA.
  8. Hetel, L. and Fridman, E. (2013). Robust sampled-data control of switched affine systems, IEEE Transactions on Automatic Control 58(11): 2922-2928.10.1109/TAC.2013.2258786
  9. Leth, J. and Wisniewski, R. (2014). Local analysis of hybrid systems on polyhedral sets with state-dependent switching, International Journal of Applied Mathematics and Computer Science 24(2): 341-355, DOI: 10.2478/amcs-2014-0026.10.2478/amcs-2014-0026
  10. Liberzon, D. (2003). Switching in Systems and Control, Birkh¨auser, Boston, MA.10.1007/978-1-4612-0017-8
  11. Liberzon, D. andMorse, A.S. (1999). Basic problems in stability and design of switched systems, IEEE Control Systems Magazine 19(5): 59-70.10.1109/37.793443
  12. Luis-Delgado, J.D., Al-Hadithi, B.M. and Jim´enez, A. (2017). A novel method for the design of switching surfaces for discretized MIMO nonlinear systems, International Journal of Applied Mathematics and Computer Science 27(1): 5-17, DOI: 10.1515/amcs-2017-0001.10.1515/amcs-2017-0001
  13. Packard, A. (1994). Gain scheduling via linear fractional transformation, Systems & Control Letters 22(2): 79-92.10.1016/0167-6911(94)90102-3
  14. Pettersson, S. and Lennartson, B. (2002). Hybrid system stability and robustness verification using linear matrix-inequalities, International Journal of Control 75(16-17): 1335-1355.10.1080/0020717021000023762
  15. Scharlau, C.C., de Oliveira, M.C., Trofino, A. and Dezuo, T.J.M. (2014). Switching rule design for affine switched systems using a max-type composition rule, Systems & Control Letters 68(1): 1-8.10.1016/j.sysconle.2014.02.007
  16. Skelton, R.E., Iwasaki, T. and Grigoriadis, K.M. (1998). A Unified Algebraic Approach to Linear Control Design, Taylor & Francis, London.
  17. Sun, Z. and Ge, S.S. (2005). Switched Linear Systems: Control and Design, Springer, London.10.1007/1-84628-131-8
  18. Trofino, A., Assmann, D., Scharlau, C.C. and Coutinho, D.F. (2009). Switching rule design for switched dynamic systems with affine vector fields, IEEE Transactions on Automatic Control 54(9): 2215-2222.10.1109/TAC.2009.2026848
  19. van der Schaft, A. and Schumacher, H. (2000). An Introduction to Hybrid Dynamical Systems, Springer, London.10.1007/BFb0109998
  20. Wicks, M.A., Peleties, P. and DeCarlo, R. A. (1998). Switched controller design for the quadratic stabilization of a pair of unstable linear systems, European Journal of Control 4(2): 140-147.10.1016/S0947-3580(98)70108-6
  21. Xiang, W. (2016). Necessary and sufficient condition for stability of switched uncertain linear systems under dwell-time constraint, IEEE Transactions on Automatic Control 61(11): 3619-3624.10.1109/TAC.2016.2524996
  22. Xiang, W. and Xiao, J. (2014). Stabilization of switched continuous-time systems with all modes unstable via dwell time switching, Automatica 50(3): 940-945.10.1016/j.automatica.2013.12.028
  23. Xiang, Z., Wang, R. and Chen, Q. (2010). Fault tolerant control of switched nonlinear systems with time delay under asynchronous switching, International Journal of Applied Mathematics and Computer Science 20(3): 497-506, DOI: 10.2478/v10006-010-0036-0.10.2478/v10006-010-0036-0
  24. Xu, X. and Zhai, G. (2005). Practical stability and stabilization of hybrid and switched systems, IEEE Transactions on Automatic Control 50(11): 1897-1903.10.1109/TAC.2005.858680
  25. Xu, X., Zhai, G. and He, S. (2008). On practical asymptotic stabilizability of switched affine systems, Nonlinear Analysis: Hybrid Systems 2(1): 196-208.10.1016/j.nahs.2007.07.003
  26. Yoshimura, V.L., Assuncao, E., da Silva, E.R.P., Teixeira, M.C.M. and Mainardi Jr., E.I. (2013). Observer-based control design for switched affine systems and applications to DC-DC converters, Journal of Control, Automation and Electrical Systems 24(4): 535-543.10.1007/s40313-013-0044-z
  27. Zhai, G. (2001). Quadratic stabilizability of discrete-time switched systems via state and output feedback, Proceedings of the Conference on Decision and Control, Orlando, Florida, FL, USA, pp. 2165-2166.
  28. Zhai, G. (2012). Quadratic stabilizability and H∞ disturbance attenuation of switched linear systems via state and output feedback, Proceedings of the Conference on Decision and Control, Maui, HI, USA, pp. 1935-1940.
  29. Zhai, G. (2015). A generalization of the graph Laplacian with application to a distributed consensus algorithm, International Journal of Applied Mathematics and Computer Science 25(2): 353-360, DOI: 10.1515/amcs-2015-0027.10.1515/amcs-2015-0027
  30. Zhai, G., Hu, B., Yasuda, K. and Michel, A.N. (2001). Disturbance attenuation properties of time-controlled switched systems, Journal of The Franklin Institute 338(7): 765-779.10.1016/S0016-0032(01)00030-8
  31. Zhai, G. and Huang, C. (2015). A note on basic consensus problems in multi-agent systems with switching interconnection graphs, International Journal of Control 88(3): 631-639.10.1080/00207179.2014.971431
  32. Zhai, G., Lin, H. and Antsaklis, P.J. (2003). Quadratic stabilizability of switched linear systems with polytopic uncertainties, International Journal of Control 76(7): 747-753.10.1080/0020717031000114968
  33. Zhai, G., Xu, X., Lin, H. and Liu, D. (2007). Extended Lie algebraic stability analysis for switched systems with continuous-time and discrete-time subsystems, International Journal of Applied Mathematics and Computer Science 17(4): 447-454, DOI: 10.2478/v100006-007-0036-x.10.2478/v100006-007-0036-x
DOI: https://doi.org/10.2478/amcs-2018-0032 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 429 - 440
Submitted on: Aug 8, 2017
Accepted on: Apr 21, 2018
Published on: Oct 3, 2018
Published by: University of Zielona Góra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2018 Wenzhi Li, Chi Huang, Guisheng Zhai, published by University of Zielona Góra
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.