Have a personal or library account? Click to login
An Unsupervised Approach to Leak Detection and Location in Water Distribution Networks Cover

An Unsupervised Approach to Leak Detection and Location in Water Distribution Networks

Open Access
|Jun 2018

References

  1. Aksela, K., Aksela,M. and Vahala, R. (2009). Leakage detection in a real distribution network using a SOM, Urban Water Journal 6(4): 279-289.10.1080/15730620802673079
  2. Alcala, C.F. and Qin, S.J. (2009). Reconstruction-based contribution for process monitoring, Automatica 45(7): 1593-1600.10.1016/j.automatica.2009.02.027
  3. Beghi, A., Brignoli, R., Cecchinato, L., Menegazzo, G., Rampazzo, M. and Simmini, F. (2016). Data-driven fault detection and diagnosis for HVAC water chillers, Control Engineering Practice 53: 79-91.10.1016/j.conengprac.2016.04.018
  4. Chiang, L.H., Rusell, E. and Braatz, R.D. (2001). Fault Detection and Diagnosis in Industrial Systems, Springer, London.10.1007/978-1-4471-0347-9
  5. Colombo, A.F. and Kamey, B.W. (2002). Energy and costs of leaky pipes: Toward comprehensive picture, Journal of Water Resource Planning and Management 128(6): 441-450.10.1061/(ASCE)0733-9496(2002)128:6(441)
  6. Fujiwara, O. and Khang, D.B. (1990). A two-phase decomposition method for optimal design of looped water distribution networks, Water Resources Research 26(4): 539-549.10.1029/WR026i004p00539
  7. Houghtalen, R.J., Akan, A.O. and Hwang, N.H.C. (2010). Fundamentals of Hydraulic Engineering Systems, 4th Edn., Prentice Hall, Englewood Cliffs, NJ.
  8. Jung, D. and Lansey, K. (2015). Water distribution system burst detection using a nonlinear Kalman filter, Journal of Water Resources Planning and Management 141(5): 1-13.10.1061/(ASCE)WR.1943-5452.0000464
  9. Ku, W., Storer, R.H. and Georgakis, C. (1995). Disturbance detection and isolation by dynamic principal component analysis, Chemometrics and Intelligent Laboratory Systems 30: 179-196.10.1016/0169-7439(95)00076-3
  10. Łangowski, R. and Brdys, M.A. (2017). An interval estimator for chlorine monitoring in drinking water distribution systems under uncertain system dynamics, inputs and chlorine concentration measurement errors, International Journal of Applied Mathematics and Computer Science 27(2): 309-322, DOI: 10.1515/amcs-2017-0022.10.1515/amcs-2017-0022
  11. Laucelli, D., Romano, M., Savic, D. and Giustolisi, O. (2016). Detecting anomalies in water distribution networks using EPR modelling paradigm, Journal of Hydroinformatics 18(3): 409-427.10.2166/hydro.2015.113
  12. Ko´scielny, J.M., Syfert, M., Rostek, K. and Sztyber, A. (2017). Fault isolability with different forms of the faults-symptoms relation, International Journal of Applied Mathematics and Computer Science 26(4): 815-826, DOI: 10.1515/amcs-2016-0058.10.1515/amcs-2016-0058
  13. Moczulski, W., Wycz, R., Ciupke, K., Przystałka, P., Tomasik, P. and Wachla, D. (2016). A methodology of leakage detection and location in water distribution networks-The case study, Conference on Control and Fault Tolerant Systems SysTol, Barcelona, Spain, pp. 331-336.10.1109/SYSTOL.2016.7739772
  14. Montgomery, D.C. and Runger, G.C. (2014). Applied Statistics and Probability for Engineers, 6th Edn., Wiley, Hoboken, NJ. Mounce, S.R., Mounce, R.B., Jackson, T., Austin, J. and Boxall, J.B. (2014). Pattern matching and associative artificial neural networks for water distribution system time series data analysis, Journal of Hydroinformatics 16(3): 617-632.10.2166/hydro.2013.057
  15. Nowicki, A., Grochowski, M. and Duzinkiewicz, K. (2012). Data-driven models for fault detection using kernel PCA: A water distribution system case study, International Journal of Applied Mathematics and Computer Science 22(4): 939-949, DOI: 10.2478/v10006-012-0070-1.10.2478/v10006-012-0070-1
  16. Olsson, G. (2006). Instrumentation, control and automation in the water industry-State-of-the-art and new challenges, Water Science and Technology 53(4-5): 1-16.10.2166/wst.2006.097
  17. Palau, C.V., Arregui, F.J. and Carlos, M. (2012). Burst detection in water networks using principal component analysis, Journal of Water Resources Planning and Management 138(1): 47-54.10.1061/(ASCE)WR.1943-5452.0000147
  18. Papoulis, A. (1991). Probability, Random Variables, and Stochastic Processes, 3rd Edn., McGraw-Hill, New York, NY.
  19. Quiñones-Grueiro, M., Verde, C. and Llanes-Santiago, O. (2017). Features of demand patterns for leak detection in water distribution networks, in C. Verde and L. Torres (Eds.), Modeling and Monitoring of Pipelines and Networks, Springer, Cham, Chapter 9, pp. 171-189.10.1007/978-3-319-55944-5_9
  20. Quiñones-Grueiro, M., Verde, C. and Prieto-Moreno, A. (2016). Leaks’ detection in water distribution networks with demand patterns, 3rd Conference on Control and Fault Tolerant Systems SysTol, Barcelona, Spain, pp. 313-318.10.1109/SYSTOL.2016.7739769
  21. Rato, T.J. and Reis, M.S. (2013). Defining the structure of DPCA models and its impact on process monitoring and prediction activities, Chemometrics and Intelligent Laboratory Systems 125: 74-86.10.1016/j.chemolab.2013.03.009
  22. Romano, M., Kapelan, Z. and Savi´c, D.A. (2010). Real-time leak detection in water distribution systems, Water Distribution Systems Analysis Conference, ASCE, Tucson, AZ, USA, pp. 1074-1082.
  23. Romano, M., Kapelan, Z. and Savic, D.A. (2013). Geostatistical techniques for approximate location of pipe burst events in water distribution systems, Journal of Hydroinformatics 15(3): 634-652.10.2166/hydro.2013.094
  24. Rossman, L.A. (2000). Epanet 2 User’s Manual, Technical report, United States Envionmental Protection Agency, http://www.epa.gov/nrmrl/wswrd/dw/epanet.html.
  25. Sanz, G., Pérez, R., Kapelan, Z., Savic, D. and Asce, A.M. (2015). Leak detection and localization through demand components calibration, Journal of Water Resources Planning and Management 142(2): 1-13.10.1061/(ASCE)WR.1943-5452.0000592
  26. Sedki, A. and Ouazar, D. (2012). Hybrid particle swarm optimization and differential evolution for optimal design of water distribution systems, Advanced Engineering Informatics 26(3): 582-591.10.1016/j.aei.2012.03.007
  27. Soldevila, A., Blesa, J., Tornil-Sin, S., Duviella, E., Fernandez-Canti, R.M. and Puig, V. (2016). Leak localization in water distribution networks using a mixed model-based/data-driven approach, Control Engineering Practice 55: 162-173.10.1016/j.conengprac.2016.07.006
  28. Soldevila, A., Fernandez-Canti, R.M., Blesa, J., Tornil-Sin, S. and Puig, V. (2017). Leak localization in water distribution networks using Bayesian classifiers, Journal of Process Control 55: 1-9.10.1016/j.jprocont.2017.03.015
  29. Wachla, D., Przystalka, P.and Moczulski, W. (2015). A method of leakage location in water distribution networks using artificial-neuro fuzzy system, IFAC-PapersOnLine 48(21): 1216-1223.10.1016/j.ifacol.2015.09.692
  30. Wang, J., Member, S., Chen, T., Member, S. and Huang, B. (2006). Cyclo-period estimation for discrete-time cyclo-stationary signals, IEEE Transactions on Signal Processing 54(1): 83-94.10.1109/TSP.2005.859237
  31. Wu, Y., Liu, S., Wu, X., Liu, Y. and Guan, Y. (2016). Burst detection in district metering areas using a data driven clustering algorithm, Water Research 100: 28-37.10.1016/j.watres.2016.05.016
  32. Yue, H.H. and Qin, S.J. (2001). Reconstruction-based fault identification using a combined index, Industrial & Engineering Chemistry Research 40(20): 4403-4414.10.1021/ie000141+
  33. Zhang, Q., Wu, Z.Y., Zhao, M., Qi, J., Huang, Y. and Zhao, H. (2016). Leakage zone identification in large-scale water distribution systems using multiclass support vector machines, Journal of Water Resources Planning and Management 142(11): 1-15.10.1061/(ASCE)WR.1943-5452.0000661
  34. Zhou, S.L., McMahon, T.A., Walton, A. and Lewis, J. (2002). Forecasting operational demand for an urban water supply zone, Journal of Hydrology 259(1-4): 189-202.10.1016/S0022-1694(01)00582-0
DOI: https://doi.org/10.2478/amcs-2018-0020 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 283 - 295
Submitted on: Mar 24, 2017
Accepted on: Jan 29, 2018
Published on: Jun 29, 2018
Published by: University of Zielona Góra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2018 Marcos Quiñones-Grueiro, Cristina Verde, Alberto Prieto-Moreno, Orestes Llanes-Santiago, published by University of Zielona Góra
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.