Have a personal or library account? Click to login
Stabilization of an epidemic model via an N-periodic approach Cover
Open Access
|Mar 2018

References

  1. Ainseba, B.E., Benosman, C. and Maga, P. (2010). A model for ovine brucellosis incorporating direct and indirect transmission, Journal of Biological Dynamics 4(1): 2-11, DOI: 10.1080/17513750903171688. 10.1080/1751375090317168822881067
  2. EFSA/ECLC (2014). The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2012, EFSA Journal 12(2): 3547. 10.2903/j.efsa.2014.3547
  3. Beaumont, C., Burie, J., Ducrot, A. and Zongo, P. (2012). Propagation of Salmonella within an industrial hen house, SIAM Journal of Applied Mathematics 72(4): 1113-1148, DOI: 10.1137/110822967.10.1137/110822967
  4. Berman, A. and Plemmons, R. (1994). Nonnegative Matrices in the Mathematical Sciences, SIAM, Philadelphia, PA.10.1137/1.9781611971262
  5. Bittanti, S. (1986). Deterministic and stochastic linear periodic systems, in S. Bittanti (Ed.), Time Series and Linear Systems, Lecture Notes in Control and Information Science, Vol. 86, Springer, Berlin, pp. 141-182.10.1007/BFb0043803
  6. Cantó, B., Coll, C. and Sánchez, E. (2013). Structured parametric epidemic model, International Journal of Computer Mathematics 91(2): 188-197, DOI: 10.1080/00207160.2013.800864.10.1080/00207160.2013.800864
  7. Cantó, B., Coll, C. and Sánchez, E. (2014). A study on vaccination models for a seasonal epidemic process, Applied Mathematics and Computation 243: 152-160, DOI: 10.1016/j.amc.2015.05.104.10.1016/j.amc.2015.05.104
  8. Ding, D., Ma, Q. and Ding, X. (2014). An unconditionally positive and global stability preserving NSFD scheme for an epidemic model with vaccination, International Journal of Applied Mathematics and Computer Science 24(3): 635-646, DOI: 10.2478/amcs-2014-0046.10.2478/amcs-2014-0046
  9. Enatsu, Y., Nakata, Y. and Muroya, Y. (2012). Global stability for a discrete SIS epidemic model with immigration of infectives, Journal of Difference Equations and Applications 18(2): 1913-1924, DOI: 10.1080/10236198.2011.602973.10.1080/10236198.2011.602973
  10. Joh, R., Wang, H., Weis, H. and Weitz, J. (2009). Dynamics of indirectly transmitted infectious diseases with immunological threshold, Bulletin of Mathematical Biology 71(4): 845-862.10.1007/s11538-008-9384-419096894
  11. Li, C. and Schneider, H. (2002). Applications of Perron-Frobenius theory to population dynamics, Journal Mathematical Biology 44(5): 450-462, DOI: 10.1007/s002850100132.10.1007/s002850100132
  12. Li, X. and Wang, W. (2005). A discrete epidemic model with stage structure, Chaos Solitons & Fractals 26(3): 947-958, DOI: 10.1016/j.chaos.2005.01.063.10.1016/j.chaos.2005.01.063
  13. Liao, S. and Yang, W. (2013). On the dynamics of a vaccination model with multiple transmission ways, International Journal of Applied Mathematics and Computer Science 23(4): 761-772, DOI: 10.2478/amcs-2013-0057.10.2478/amcs-2013-0057
  14. Meyer, R. and Burrus, C. (1975). A unified analysis of multirate and periodically time-varying digital filters, IEEE Transactions on Circuits and Systems 22(3): 162-168.10.1109/TCS.1975.1084020
  15. Prevost, K., Beaumont, C. and Magal, P. (2006). Asymptotic behavior in a Salmonella infection model, Mathematical Modelling of Natural Phenomena 2(1): 1-22.10.1051/mmnp:2008008
  16. Rass, L. and Radcliffe, J. (2000). Global asymptotic convergence results for multitype models, International Journal of Applied Mathematics and Computer Science 10(1): 63-79.
  17. van den Driessche, P. and Watmough, J. (2002). Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Mathematical Biosciences 180(1): 29-48.10.1016/S0025-5564(02)00108-6
  18. Wijaya, K.P., Sutimin, Soewono, E. and G¨otz, T. (2017). On the existence of a nontrivial equilibrium in relation to the basic reproductive number, International Journal of Applied Mathematics and Computer Science 27(3): 623-636, DOI: 10.1515/amcs-2017-0044.10.1515/amcs-2017-0044
  19. Xiao, Y., Clancy, D., French, N. and Bowers, R. (2006). A semi-stochastic model for Salmonella infection in a multi-group herd, Mathematical Biosciences 200(2): 214-233.10.1016/j.mbs.2006.01.00616529775
  20. Zongo, P., Viet, A., Magal, P. and Beaumont, C. (2010). A spatio-temporal model to describe the spread of Salmonella within a laying flock, Journal of Theoretical Biology 267(4): 595-604, DOI: 10.1016/j.jtbi.2010.09.030.10.1016/j.jtbi.2010.09.03020883702
DOI: https://doi.org/10.2478/amcs-2018-0014 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 185 - 195
Submitted on: Feb 27, 2017
Accepted on: Sep 25, 2017
Published on: Mar 31, 2018
Published by: University of Zielona Góra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2018 Begoña Cantó, Carmen Coll, Elena Sánchez, published by University of Zielona Góra
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.