Have a personal or library account? Click to login
A geometric approach to structural model matching by output feedback in linear impulsive systems Cover

A geometric approach to structural model matching by output feedback in linear impulsive systems

By: Elena Zattoni  
Open Access
|Mar 2018

References

  1. Basile, G. and Marro, G. (1992). Controlled and Conditioned Invariants in Linear System Theory, Prentice Hall, Englewood Cliffs, NJ.
  2. Carnevale, D., Galeani, S., Menini, L. and Sassano, M. (2016). Hybrid output regulation for linear systems with periodic jumps: Solvability conditions, structural implications and emi-classical solutions, IEEE Transactions on Automatic Control 61(9): 2416-2431.10.1109/TAC.2015.2496258
  3. Carnevale, D., Galeani, S. and Sassano, M. (2014a). Francis equations vs invariant subspace algorithm for hybrid output regulation, 53rd IEEE Conference on Decision and Control, Los Angeles, CA, USA, pp. 4697-4702.10.1109/CDC.2014.7040121
  4. Carnevale, D., Galeani, S. and Sassano, M. (2014b). A linear quadratic approach to linear time invariant stabilization for a class of hybrid systems, 22nd Mediterranean Conference on Control and Automation, Palermo, Italy, pp. 545-550.10.1109/MED.2014.6961429
  5. Choe, D.-G. and Kim, J.-H. (2002). Pitch autopilot design using model-following adaptive sliding mode control, Journal of Guidance, Control, and Dynamics 25(4): 826-829.10.2514/2.4954
  6. Colaneri, P. and Kučera, V. (1997). The model matching problem for periodic discrete-time systems, IEEE Transactions on Automatic Control 42(10): 1472-1476.10.1109/9.633843
  7. Conte, G. and Perdon, A.M. (1995). The disturbance decoupling problem for systems over a ring, SIAM Journal on Control and Optimization 33(3): 750-764.10.1137/S0363012992235638
  8. Conte, G., Perdon, A.M. and Zattoni, E. (2013). A geometric approach to output regulation for discrete-time switched linear systems, 21st Mediterranean Conference on Control and Automation, Platanias-Chania, Crete, Greece, pp. 852-857.10.1109/MED.2013.6608822
  9. Conte, G., Perdon, A.M. and Zattoni, E. (2014). Model matching problems for switching linear systems, IFAC Proceedings Volumes 47(3): 1501-1506.10.3182/20140824-6-ZA-1003.00162
  10. Conte, G., Perdon, A.M. and Zattoni, E. (2015a). The disturbance decoupling problem for jumping hybrid systems, 54th IEEE Conference on Decision and Control, Osaka, Japan, pp. 1589-1594.10.1109/CDC.2015.7402437
  11. Conte, G., Perdon, A.M. and Zattoni, E. (2015b). The disturbance decoupling problem with quadratic stability for LPV systems, IFAC-PapersOnLine 48(26): 1-6.10.1016/j.ifacol.2015.11.104
  12. Conte, G., Perdon, A.M. and Zattoni, E. (2017). Unknown input observers for hybrid linear systems with state jumps, IFACPapersOnLine 50(1): 6458-6464.10.1016/j.ifacol.2017.08.1041
  13. Djemai, M. and Deefort, M. (2015). Hybrid Dynamical Systems, Lecture Notes in Control and Information Sciences, Vol. 457, Springer, Berlin/Heidelberg.10.1007/978-3-319-10795-0
  14. Engell, S., Frehse, G. and Schnieder, E. (2002). Modeling, Analysis and Design of Hybrid Systems, Lecture Notes in Control and Information Sciences, Vol. 279, Springer, Berlin/Heidelberg.10.1007/3-540-45426-8
  15. Goebel, R., Sanfelice, R.G. and Teel, A.R. (2012). Hybrid Dynamical Systems: Modeling, Stability, and Robustness, Princeton University Press, Princeton, NJ.10.23943/princeton/9780691153896.001.0001
  16. Haddad, W.M., Chellaboina, V.S. and Nersesov, S.G. (2006). Impulsive and Hybrid Dynamical Systems: Stability, Dissipativity, and Control, Princeton Series in Applied Mathematics, Vol. 6, Princeton University Press, Princeton, NJ.10.1515/9781400865246
  17. Hua, C.-C. and Ding, S. (2011). Model following controller design for large-scale systems with time-delay interconnections and multiple dead-zone inputs, IEEE Transactions on Automatic Control 56(4): 962-968.10.1109/TAC.2011.2107111
  18. Kaczorek, T. (1982). Polynomial equation approach to exact model matching problem in multivariable linear systems, International Journal of Control 36(3): 531-539.10.1080/00207178208932913
  19. Kouhi, Y., Bajcinca, N. and Sanfelice, R.G. (2013). Suboptimality bounds for linear quadratic problems in hybrid linear systems, 2013 European Control Conference, Z¨urich, Switzerland, pp. 2663-2668. 10.23919/ECC.2013.6669821
  20. Kučera, V. (1992). Model matching of descriptor systems by proportional state feedback, Automatica 28(2): 423-425.10.1016/0005-1098(92)90130-8
  21. Lawrence, D.A. (2014). Controlled invariant subspaces for linear impulsive systems, 2014 American Control Conference, Portland, OR, USA, pp. 2336-2341.10.1109/ACC.2014.6858804
  22. Lawrence, D.A. (2015). Conditioned invariant subspaces for linear impulsive systems, 2015 American Control Conference, Chicago, IL, USA, pp. 4850-4855.10.1109/ACC.2015.7172093
  23. Li, Z., Soh, Y. and Wen, C. (2005). Switched and Impulsive Systems: Analysis, Design and Applications, Lecture Notes in Control and Information Sciences, Vol. 313, Springer-Verlag, Berlin/Heidelberg.10.1007/11318866_2
  24. Lin,W.-S. and Tsai, C.-H. (1999). Neurofuzzy-model-following control of MIMO nonlinear systems, IEE Proceedings: Control Theory and Applications 146(2): 157-164.10.1049/ip-cta:19990515
  25. Marro, G. and Zattoni, E. (2002). A novel geometric insight into the model matching problem with stability, 41st IEEE Conference on Decision and Control, Las Vegas, NV, USA, pp. 2137-2142.
  26. Marro, G. and Zattoni, E. (2005). Self-bounded controlled invariant subspaces in model following by output feedback: Minimal-order solution for nonminimum-phase systems, Journal of Optimization Theory and Applications 125(2): 409-429.10.1007/s10957-004-1857-5
  27. Medina, E.A. and Lawrence, D.A. (2006). Controlled and conditioned invariants for linear impulsive systems, 45th IEEE Conference on Decision and Control, San Diego, CA, USA, pp. 2753-2758.10.1109/CDC.2006.377071
  28. Medina, E.A. and Lawrence, D.A. (2009). State estimation for linear impulsive systems, 2009 American Control Conference, St. Louis, MO, USA, pp. 1183-1188.10.1109/ACC.2009.5160347
  29. Moog, C.H., Conte, G. and Perdon, A.M. (1991). Model matching and factorization for nonlinear systems: A structural approach, SIAM Journal on Control and Optimization 29(4): 769-785.10.1137/0329042
  30. Morse, A.S. (1973). Structure and design of linear model following systems, IEEE Transactions on Automatic Control 18(4): 346-354.10.1109/TAC.1973.1100342
  31. Ni,M., Er,M., Leithead,W. and Leith, D. (2001). New approach to the design of robust tracking and model following controllers for uncertain delay systems, IEE Proceedings: Control Theory and Applications 148(6): 472-477.10.1049/ip-cta:20010770
  32. Noldus, E. (1987). Non-linear model following, Automatica 23(3): 387-391.10.1016/0005-1098(87)90012-4
  33. Pascual, M., Garcer´a, G., Figueres, E. and Gonz´alez-Esp´ın, F. (2008). Robust model-following control of parallel UPS single-phase inverters, IEEE Transactions on Industrial Electronics 55(8): 2870-2883.10.1109/TIE.2008.918602
  34. Perdon, A.M., Conte, G. and Zattoni, E. (2016a). Necessary and sufficient conditions for asymptotic model matching of switching linear systems, Automatica 64(2): 294-304.10.1016/j.automatica.2015.11.017
  35. Perdon, A.M., Zattoni, E. and Conte, G. (2016b). Disturbance decoupling with stability for linear impulsive systems, IFAC-PapersOnLine 49(9): 1-6.10.1016/j.ifacol.2016.07.477
  36. Perdon, A.M., Zattoni, E. and Conte, G. (2016c). Model matching with strong stability in switched linear systems, Systems & Control Letters 97(11): 98-107.10.1016/j.sysconle.2016.09.009
  37. Rajasekaran, J., Chunodkar, A. and Padhi, R. (2009). Structured model-following neuro-adaptive design for attitude maneuver of rigid bodies, Control Engineering Practice 17(6): 676-689.10.1016/j.conengprac.2008.11.001
  38. Savkin, A.V. and Evans, R.J. (2002). Hybrid Dynamical Systems. Controller and Sensor Switching Problems, Control Engineering Series, Birkhauser, Boston, MA.10.1007/978-1-4612-0107-6
  39. Shioemaru, S. and Wu, H. (2001). Decentralized robust tracking and model following for uncertain large-scale interconnected systems, Journal of Optimization Theory and Applications 110(1): 35-52.10.1023/A:1017539428296
  40. Shyu, K.-K. and Chen, Y.-C. (1995). Robust tracking and model following for uncertain time-delay systems, International Journal of Control 62(3): 589-600.10.1080/00207179508921558
  41. Van der Schaft, A.J. and Schumacher, H. (2000). An Introduction to Hybrid Dynamical Systems, Lecture Notes in Control and Information Sciences, Vol. 251, Springer, Berlin/Heidelberg.10.1007/BFb0109998
  42. Wang, D., Wu, S. and Okubo, S. (2009). Design of the state predictive model following control system with time-delay, International Journal of Applied Mathematics and Computer Science 19(2): 247-254, DOI: 10.2478/v10006-009-0020-8.10.2478/v10006-009-0020-8
  43. Wang, L., Zhu, J. and Park, J. (2012). A probabilistic approach for model following of Markovian jump linear systems subject to actuator saturation, International Journal of Control, Automation and Systems 10(5): 1042-1048.10.1007/s12555-012-0522-2
  44. Wolovich, W.A. (1972). The use of state feedback for exact model matching, SIAM Journal on Control 10(3): 512-523.10.1137/0310039
  45. Wonham, W.M. (1985). Linear Multivariable Control: A Geometric Approach, 3rd Edn., Springer-Verlag, New York, NY.10.1007/978-1-4612-1082-5
  46. Wu, H. (2004). Adaptive robust tracking and model following of uncertain dynamical systems with multiple time delays, IEEE Transactions on Automatic Control 49(4): 611-616.10.1109/TAC.2004.825634
  47. Zakharov, A., Zattoni, E., Xie, L., Garcia, O. and J¨ams¨a-Jounela, S.-L. (2013). An autonomous valve stiction detection system based on data characterization, Control Engineering Practice 21(11): 1507-1518.10.1016/j.conengprac.2013.07.004
  48. Zakharov, A., Zattoni, E., Yu, M. and J¨ams¨a-Jounela, S.-L. (2015). A performance optimization algorithm for controller reconfiguration in fault tolerant distributed model predictive control, Journal of Process Control 34(8): 56-69.10.1016/j.jprocont.2015.07.006
  49. Zattoni, E. (2007). Decoupling of measurable signals via self-bounded controlled invariant subspaces: Minimal unassignable dynamics of feedforward units for prestabilized systems, IEEE Transactions on Automatic Control 52(1): 140-143.10.1109/TAC.2006.886499
  50. Zattoni, E. (2014). Measurable disturbance rejection with stability in continuous-time switched linear systems under dwell-time switching, European Control Conference 2014, Strasbourg, France, pp. 2242-2247.10.1109/ECC.2014.6862247
  51. Zattoni, E. (2016a). Disturbance decoupling with stability in discrete-time switching linear systems: Arbitrary switching, International Journal of Pure and Applied Mathematics 110(1): 227-250.10.12732/ijpam.v110i1.21
  52. Zattoni, E. (2016b). Output feedback model matching in linear impulsive systems with control feedthrough: A structural approach, IOP Journal of Physics: Conference Series 783: 1-9.10.1088/1742-6596/783/1/012044
  53. Zattoni, E. and Marro, G. (2013a). A constructive condition for inaccessible signal rejection with quadratic stability in discrete-time linear switching systems, 52nd IEEE Conference on Decision and Control, Florence, Italy, pp. 4650-4655.10.1109/CDC.2013.6760617
  54. Zattoni, E. and Marro, G. (2013b). Measurable disturbance rejection with quadratic stability in continuous-time linear switching systems, European Control Conference 2013, Z¨urich, Switzerland, pp. 2157-2162.10.23919/ECC.2013.6669248
  55. Zattoni, E., Perdon, A.M. and Conte, G. (2013a). A geometric approach to output regulation for linear switching systems, IFAC Proceedings Volumes 46(2): 172-177.10.3182/20130204-3-FR-2033.00007
  56. Zattoni, E., Perdon, A.M. and Conte, G. (2013b). The output regulation problem with stability for linear switching systems: A geometric approach, Automatica 49(10): 2953-2962.10.1016/j.automatica.2013.07.005
  57. Zattoni, E., Perdon, A.M. and Conte, G. (2014a). Disturbance decoupling with stability in continuous-time switched linear systems under dwell-time switching, IFAC Proceedings Volumes 47(3): 164-169.10.3182/20140824-6-ZA-1003.00908
  58. Zattoni, E., Perdon, A.M. and Conte, G. (2014b). Output feedback model matching with strong stability in continuous-time switched linear systems, 22nd Mediterranean Conference on Control and Automation, Palermo, Italy, pp. 525-530.10.1109/MED.2014.6961426
  59. Zattoni, E., Perdon, A.M. and Conte, G. (2015). Output regulation by error dynamic feedback in linear time-invariant hybrid dynamical systems, 14th European Control Conference, Linz, Austria, pp. 1438-1443.10.1109/ECC.2015.7330741
  60. Zattoni, E., Perdon, A.M. and Conte, G. (2016). Disturbance decoupling with closed-loop modes stability in switched linear systems, IEEE Transactions on Automatic Control 61(10): 3115-3121.10.1109/TAC.2015.2498123
  61. Zattoni, E., Perdon, A.M. and Conte, G. (2017a). Output regulation by error dynamic feedback in hybrid linear systems with state jumps, IFAC-PapersOnLine 50(1): 10808-10815.10.1016/j.ifacol.2017.08.2352
  62. Zattoni, E., Perdon, A.M. and Conte, G. (2017b). Output regulation by error dynamic feedback in hybrid systems with periodic state jumps, Automatica 81(7): 322-334.10.1016/j.automatica.2017.03.037
DOI: https://doi.org/10.2478/amcs-2018-0002 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 25 - 38
Submitted on: Jan 30, 2017
Accepted on: Jun 30, 2017
Published on: Mar 31, 2018
Published by: University of Zielona Góra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2018 Elena Zattoni, published by University of Zielona Góra
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.