Have a personal or library account? Click to login
Minimal positive realizations of linear continuous-time fractional descriptor systems: Two cases of an input-output digraph structure Cover

Minimal positive realizations of linear continuous-time fractional descriptor systems: Two cases of an input-output digraph structure

Open Access
|Mar 2018

References

  1. Bang-Jensen, J. and Gutin, G. (2009). Digraphs: Theory, Algorithms and Applications, Springer-Verlag, London.10.1007/978-1-84800-998-1
  2. Benvenuti, L. and Farina, L. (2004). A tutorial on the positive realization problem, IEEE Transactions on Automatic Control 49(5): 651-664.10.1109/TAC.2004.826715
  3. Berman, A. and Plemmons, R.J. (1979). Nonnegative Matrices in the Mathematical Sciences, SIAM, London.10.1016/B978-0-12-092250-5.50009-6
  4. Caputo, M. (1967). Linear models of dissipation whose q is almost frequency independent-II, Geophysical Journal International 13(5): 529, DOI: 10.1111/ j.1365-246X.1967.tb02303.x.10.1111/j.1365-246X.1967.tb02303.x
  5. Dai, L. (Ed.) (1989). System Analysis via Transfer Matrix, Springer, Berlin/Heidelberg, DOI: 10.1007/BFb0002482.10.1007/BFb0002482
  6. Das, S. (2011). Functional Fractional Calculus, Springer, Berlin/Heidelberg, DOI: 10.1007/978-3-642-20545-3.10.1007/978-3-642-20545-3
  7. Dodig, M. and Stoi, M. (2009). Singular systems, state feedback problem, Linear Algebra and Its Applications 431(8): 1267-1292, DOI:10.1016/j.laa.2009.04.024.10.1016/j.laa.2009.04.024
  8. Farina, L. and Rinaldi, S. (2000). Positive Linear Systems: Theory and Applications, Wiley-Interscience, New York, NY.10.1002/9781118033029
  9. Fornasini, E. and Valcher, M.E. (1997). Directed graphs, 2D state models, and characteristic polynomials of irreducible matrix pairs, Linear Algebra and Its Applications 263: 275-310.10.1016/S0024-3795(96)00540-X
  10. Fornasini, E. and Valcher, M.E. (2005). Controllability and reachability of 2D positive systems: A graph theoretic approach, IEEE Transactions on Circuits and Systems I 52(3): 576-585.10.1109/TCSI.2004.842872
  11. Godsil, C. and Royle, G. (2001). Algebraic Graph Theory, Springer Verlag, New York, NY.10.1007/978-1-4613-0163-9
  12. Guang-Ren, D. (2010). Analysis and Design of Descriptor Linear Systems, Springer, New York, NY, DOI: 10.1007/978-1-4419-6397-0.10.1007/978-1-4419-6397-0
  13. Horn, R.A. and Johnson, C.R. (1991). Topics in Matrix Analysis, Cambridge University Press, Cambridge. 10.1017/CBO9780511840371
  14. Hryniów, K. and Markowski, K.A. (2014). Parallel digraphs-building algorithm for polynomial realisations, Proceedings of 15th International Carpathian Control Conference (ICCC), Velke Karlovice, Czech Republic, pp. 174-179, DOI: 10.1109/CarpathianCC.2014.6843592.10.1109/CarpathianCC.2014.6843592
  15. Hryniów, K. and Markowski, K.A. (2015). Optimisation of digraphs creation for parallel algorithm for finding a complete set of solutions of characteristic polynomial, Proceedings of the 20th International Conference on Methods and Models in Automation and Robotics, MMAR 2015, Miedzyzdroje, Poland, pp. 1139-1144, DOI: 10.1109/MMAR.2015.7284039.10.1109/MMAR.2015.7284039
  16. Hryniów, K. and Markowski, K.A. (2016a). Classes of digraph structures corresponding to characteristic polynomials, in R. Szewczyk et al. (Eds.), Challenges in Automation, Robotics and Measurement Techniques: Proceedings of Automation 2016, Warsaw, Poland, Springer International Publishing, Cham, pp. 329-339, DOI: 10.1007/978-3-319-29357-8 30.10.1007/978-3-319-29357-830
  17. Hryniów, K. and Markowski, K.A. (2016b). Parallel digraphs-building computer algorithm for finding a set of characteristic polynomial realisations of dynamic system, Journal of Automation, Mobile Robotics and Intelligent Systems 10(03): 38-51, DOI: 10.14313/JAMRIS 3-2016/23.10.14313/JAMRIS3-2016/23
  18. Ionescu, C.M., Kosinski, W. and De Keyser, R. (2010). Viscoelasticity and fractal structure in a model of human lungs, Archives of Mechanics 62(1): 21-48.
  19. Kaczorek, T. (2001). Positive 1D and 2D Systems, Springer Verlag, London.10.1007/978-1-4471-0221-2
  20. Kaczorek, T. (2007). Polynomial and Rational Matrices, Springer Verlag, London.10.1007/978-1-84628-605-6
  21. Kaczorek, T. (2011). Singular fractional linear systems and electrical circuits, International Journal of Applied Mathematics and Computer Science 21(2): 379-384, DOI: 10.2478/v10006-011-0028-8.10.2478/v10006-011-0028-8
  22. Kaczorek, T. and Sajewski, L. (2014). The Realization Problem for Positive and Fractional Systems, Springer International Publishing, Berlin, DOI: 10.1007/978-3-319-04834-5.10.1007/978-3-319-04834-5
  23. Kublanovskaya, V.N. (1983). Analysis of singular matrix pencils, Journal of Soviet Mathematics 23(1): 1939-1950, DOI: 10.1007/BF01093276.10.1007/BF01093276
  24. Lewis, F. (1984). Descriptor systems: Decomposition into forward and backward subsystems, IEEE Transactions on Automatic Control 29(2): 167-170, DOI: 10.1109/TAC.1984.1103467.10.1109/TAC.1984.1103467
  25. Lewis, F.L. (1986). A survey of linear singular systems, Circuits, Systems and Signal Processing 5(1): 3-36, DOI: 10.1007/BF01600184.10.1007/BF01600184
  26. Luenberger, D.G. (1979). Introduction to Dynamic Systems: Theory, Models, and Applications, Wiley, New York, NY.
  27. Machado, J. and Lopes, A.M. (2015). Fractional state space analysis of temperature time series, Fractional Calculus and Applied Analysis 18(6): 1518-1536.10.1515/fca-2015-0088
  28. Machado, J., Mata, M.E. and Lopes, A.M. (2015). Fractional state space analysis of economic systems, Entropy 17(8): 5402-5421.10.3390/e17085402
  29. Magin, R., Ortigueira, M.D., Podlubny, I. and Trujillo, J. (2011). On the fractional signals and systems, Signal Processing 91(3): 350-371.10.1016/j.sigpro.2010.08.003
  30. Markowski, K.A. (2016). Digraphs structures corresponding to minimal realisation of fractional continuous-time linear systems with all-pole and all-zero transfer function, 2016 IEEE International Conference on Automation, Quality and Testing, Robotics (AQTR), Cluj-Napoca, Romania, pp. 1-6, DOI: 10.1109/AQTR.2016.7501367.10.1109/AQTR.2016.7501367
  31. Markowski, K.A. (2017a). Determination of minimal realisation of one-dimensional continuous-time fractional linear system, International Journal of Dynamics and Control 5(1): 40-50, DOI: 10.1007/s40435-016-0232-3.10.1007/s40435-016-0232-3
  32. Markowski, K.A. (2017b). Realisation of continuous-time (fractional) descriptor linear systems, in R. Szewczyk et al. (Eds.), Automation 2017, Springer International Publishing, Cham, pp. 204-214, DOI: 10.1007/978-3-319-54042-9 19.10.1007/978-3-319-54042-919
  33. Markowski, K.A. (2017c). Realisation of linear continuous-time fractional singular systems using digraph-based method: First approach, Journal of Physics: Conference Series 783(1): 012052, DOI: 10.1088/1742-6596/783/1/012052.10.1088/1742-6596/783/1/012052
  34. Markowski, K.A. (2018). Classes of digraphs structures with weights corresponding to 1D fractional systems, International Conference on Automation, Quality and Testing, Robotics, AQTR 2018, Cluj-Napoca, Romania, (submitted).
  35. Markowski, K.A. and Hryniów, K. (2017a). Expansion of digraph size of 1-D fractional system with delay, in A. Babiarz et al. (Eds.), Theory and Applications of Non-integer Order Systems, Springer International Publishing, Cham, pp. 467-476, DOI: 10.1007/978-3-319-45474-0 41.10.1007/978-3-319-45474-041
  36. Markowski, K.A. and Hryniów, K. (2017b). Finding a set of (A, B, C, D) realisations for fractional one-dimensional systems with digraph-based algorithm, in A. Babiarz et al. (Eds.), Theory and Applications of Non-integer Order Systems, Springer International Publishing, Cham, pp. 357-368, DOI: 10.1007/978-3-319-45474-0 32.10.1007/978-3-319-45474-032
  37. Miller, K. and Ross, B. (1993). An Introduction to the Fractional Calculus and Fractional Differential Equations, Wiley, New York, NY.
  38. Mitkowski, W. (2008). Dynamical properties of Metzler systems, Bulletin of the Polish Academy of Sciences: Technical Sciences 56(4): 309-312.
  39. Muresan, C.I., Dulf, E.H. and Prodan, O. (2016a). A fractional order controller for seismic mitigation of tructures equipped with viscoelastic mass dampers, Journal of Vibration and Control 22(8): 1980-1992, DOI: 10.1177/1077546314557553.10.1177/1077546314557553
  40. Muresan, C.I., Dutta, A., Dulf, E.H., Pinar, Z., Maxim, A. and Ionescu, C.M. (2016b). Tuning algorithms for fractional order internal model controllers for time delay processes, International Journal of Control 89(3): 579-593, DOI: 10.1080/00207179.2015.1086027.10.1080/00207179.2015.1086027
  41. Nishimoto, K. (1984). Fractional Calculus, Decartess Press, Koriama.
  42. Ortigueira, M.D. (2011). Fractional Calculus for Scientists and Engineers, Academic Press, Springer, Dordrecht, DOI: 10.1007/978-94-007-0747-4.10.1007/978-94-007-0747-4
  43. Petras, I., Sierociuk, D. and Podlubny, I. (2012). Identification of parameters of a half-order system, IEEE Transactions on Signal Processing 60(10): 5561-5566.10.1109/TSP.2012.2205920
  44. Podlubny, I. (1999). Fractional Differential Equations, Academic Press, San Diego, CA.
  45. Podlubny, I., Skovranek, T. and Datsko, B. (2014). Recent advances in numerical methods for partial fractional differential equations, 2014 15th International Carpathian Control Conference (ICCC), Velke Karlovice, Czech Republic, pp. 454-457.10.1109/CarpathianCC.2014.6843647
  46. Sajewski, L. (2012). Positive realization of fractional continuous-time linear systems with delays, Pomiary Automatyka Robotyka 2: 413-417.
  47. Sikora, B. (2016). Controllability criteria for time-delay fractional systems with a retarded state, International Journal of Applied Mathematics and Computer Science 26(3): 521-531, DOI: 10.1515/amcs-2016-0036.10.1515/amcs-2016-0036
  48. Vandoorn, T.L., Ionescu, C.M., De Kooning, J.D.M., De Keyser, R. and Vandevelde, L. (2013). Theoretical analysis and experimental validation of single-phase direct versus cascade voltage control in islanded microgrids, IEEE Transactions on Industrial Electronics 60(2): 789-798.10.1109/TIE.2012.2205362
DOI: https://doi.org/10.2478/amcs-2018-0001 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 9 - 24
Submitted on: Feb 5, 2017
Accepted on: Aug 9, 2017
Published on: Mar 31, 2018
Published by: University of Zielona Góra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2018 Konrad Andrzej Markowski, published by University of Zielona Góra
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.