Have a personal or library account? Click to login
A modified van der Pol equation with delay in a description of the heart action Cover

A modified van der Pol equation with delay in a description of the heart action

Open Access
|Dec 2014

References

  1. Atay, F. (1998). Van der Pol’s oscillator under delayed feedback, Journal of Sound and Vibration 218(2): 333-339.10.1006/jsvi.1998.1843
  2. Bielczyk, N., Bodnar, M. and Fory´s, U. (2012). Delay can stabilize: Love affairs dynamics, Applied Mathematics and Computation 219(2): 3923-3937.10.1016/j.amc.2012.10.028
  3. Cooke, K. and van den Driessche, P. (1986). On zeroes of some transcendental equations, Funkcialaj Ekvacioj 29(2): 77-90.
  4. Erneux, T. and Grasman, J. (2008). Limit cycle oscillators subject to a delayed feedback, Physical Review E 78(2): 026209-1-8.10.1103/PhysRevE.78.02620918850923
  5. Foryś, U. (2004). Biological delay systems and the Mikhailov criterion of stability, Journal of Biological Systems 12(1): 45-60.10.1142/S0218339004001014
  6. Giacomin, H. and Neukirch, S. (1997). Number of limit cycles of the Lienard equation, Physical Review E 56(3809): 3809-3813.10.1103/PhysRevE.56.3809
  7. Grudzi ski, K. (2007). Modeling the Electrical Activity of the Heart Conduction, Ph.D. thesis, Warsaw University of Technology, Warsaw.
  8. Hale, J. and Lunel, S. (1993). Introduction to Functional Differential Equations, Springer-Verlag, New York, NY.10.1007/978-1-4612-4342-7
  9. Jiang, W. and Wei, J. (2008). Bifurcation analysis in van der Pol’s oscillator with delayed feedback, Journal of Computational and Applied Mathematics 213(2): 604-615.10.1016/j.cam.2007.01.041
  10. Johnson, L. (1997). Essential Medical Physiology, Lippincott Williams and Wilkins, London.
  11. Kaplan, D. and Glass, L. (1995). Understanding Nonlinear Dynamics, Springer, New York, NY.10.1007/978-1-4612-0823-5
  12. Liu, Y., Yang, R., Lu. J. and Cai, X. (2013). Stability analysis of high-order Hopfield-type neural networks based on a new impulsive differential inequality, International Journal of Applied Mathematics and Computer Science 23(1): 201-211, DOI: 10.2478/amcs-2013-0016.10.2478/amcs-2013-0016
  13. Maccari, A. (2001). The response of a parametrically excited van der Pol oscillator to a time delay state feedback, Nonlinear Dynamics 26(2): 105-119.
  14. Palit, A. and Datta, D.P. (2010). On a finite number of limit cycles in a Lienard system, International Journal of Pure and Applied Mathematics 59: 469-488.
  15. Reddy, R.D., Sen, A. and Johnston, G. (2000). Experimental evidence of time-delay-induced death in coupled limit-cycle oscillators, Physical Review Letters 85(3381): 3381-3384.10.1103/PhysRevLett.85.338111030901
  16. Xu, J. and Chung, K. (2003). Effects of time delayed position feedback on a van der Pol-Duffing oscillator, Physica D 180(1): 17-39.10.1016/S0167-2789(03)00049-6
  17. Yu, W. and Cao, J. (2005). Hopf bifurcation and stability of periodic solutions for van der Pol equation with time delay, Nonlinear Analysis 62: 141-165. 10.1016/j.na.2005.03.017
  18. Źebrowski, J., Kuklik, P. and Baranowski, R. (2008). Relaxation oscillations in the atrium-a model, Proceedings of the 5th Conference of the European Study Group on Cardiovascular Oscillations, Parma, Italy, pp. 04:16-04:19.
  19. Zhou, X., Jiang, M. and Cai, X. (2011). Hopf bifurcation analysis for the van der Pol equation with discrete and distributed delays, Discrete Dynamics in Nature and Society, 2011: 1-8, Article ID: 569141. 10.1155/2011/569141
DOI: https://doi.org/10.2478/amcs-2014-0063 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 853 - 863
Submitted on: Oct 2, 2013
|
Published on: Dec 20, 2014
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2014 Beata Zduniak, Marek Bodnar, Urszula Foryś, published by University of Zielona Góra
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.