Have a personal or library account? Click to login
On infinite horizon active fault diagnosis for a class of non-linear non-Gaussian systems Cover

On infinite horizon active fault diagnosis for a class of non-linear non-Gaussian systems

Open Access
|Dec 2014

References

  1. Andjelkovic, I., Sweetingham, K. and Campbell, S.L. (2008).
  2. Active fault detection in nonlinear systems using auxiliary signals, Proceedings of the 2008 American Control Conference, Seattle, WA, USA, pp. 2142-2147.
  3. Ashari, A.E., Nikoukhah, R. and Campbell, S.L. (2012a). Active robust fault detection in closed-loop systems: Quadratic optimization approach, IEEE Transactions on Automatic Control 57(10): 2532-2544.10.1109/TAC.2012.2188430
  4. Ashari, A.E., Nikoukhah, R. and Campbell, S.L. (2012b). Effects of feedback on active fault detection, Automatica 48(5): 866-872.10.1016/j.automatica.2012.02.020
  5. Åström, K.J. (1965). Optimal control of Markov processes with incomplete state information, Journal of Mathematical Analysis and Applications 10(1): 174-205.10.1016/0022-247X(65)90154-X
  6. Atkinson, A.C. and Donev, A.N. (1992). Optimum Experimental Designs, Oxford University Press, New York, NY.
  7. Bar-Shalom, Y. (1981). Stochastic dynamic programming: Caution and probing, IEEE Transactions on Automatic Control 26(5): 1184-1194.10.1109/TAC.1981.1102793
  8. Basseville, M. and Nikiforov, I.V. (1993). Detection of Abrupt Changes-Theory and Application, Prentice Hall, Englewood Cliffs, NJ.
  9. Bertsekas, D.P. (1995). Dynamic Programming and Optimal Control, Volume I, Athena Scientific, Belmont, MA.
  10. Blackmore, L., Rajamanoharan, S. and Williams, B.C. (2008). Active estimation for jump Markov linear systems, IEEE Transactions on Automatic Control 53(10): 2223-2236.10.1109/TAC.2008.2006100
  11. Bu§oniu, L., Babuška, R., Schutter, B.D. and Ernst, D. (2010). Reinforcement Learning and Dynamic Programming Using Function Approximators, CRC Press, Boca Raton, FL.
  12. Campbell, S.L. and Nikoukhah, R. (2004). Auxiliary Signal Design for Failure Detection, Princeton University Press, Princeton, NJ.10.1515/9781400880041
  13. Denardo, E.V. (2003). Dynamic Programming: Models and Applications, Dover Publications, Mineola, NY.
  14. Efron, B. and Tibshirani, R.J. (1994). An Introduction to the Bootstrap, Chapman and Hall, New York, NY.10.1201/9780429246593
  15. Forbes, C., Evans, M., Hastings, N. and Peacock, B. (2011). Statistical Distributions, 4th Edn., John Wiley & Sons, Inc., Hoboken, NJ.
  16. Garces, F., Becerra, V.M., Kambhampati, C. and Warwick, K. (2003). Strategies for Feedback Linearisation-A Dynamic Neural Network Approach, Springer-Verlag, London.10.1007/978-1-4471-0065-2
  17. Goodwin, G.C. and Payne, R.L. (1977). Dynamic System Identification: Experiment Design and Data Analysis, Academic Press, New York, NY.
  18. Isermann, R. (2006). Fault-Diagnosis Systems: An Introduction from Fault Detection to Fault Tolerance, Springer, Berlin.10.1007/3-540-30368-5
  19. Julier, S.J. and Uhlmann, J.K. (1997). New extension of the Kalman filter to nonlinear systems, Proceedings of the 1997 SPIE Conference on Signal Processing, Sensor Fusion, and Target Recognition, Orlando, FL, USA, pp. 182-193.
  20. Keresteciŏglu, F. (1993). Change Detection and Input Design in Dynamical Systems, Research Studies Press, Taunton.
  21. Kiefer, J.C. (1959). Optimum experimental designs, Journal of the Royal Statistical Society (Series B) 21(2): 272-319.10.1111/j.2517-6161.1959.tb00338.x
  22. Lee, J.M., Kaisare, N.S. and Lee, J.H. (2006). Choice of approximator and design of penalty function for an approximate dynamic programming based control approach, Journal of Process Control 16(2): 135-156.10.1016/j.jprocont.2005.04.010
  23. Mehra, R.K. (1974). Optimal input signals for parameter estimation in dynamic systems-Survey and new results, IEEE Transactions on Automatic Control 19(6): 753-768.10.1109/TAC.1974.1100701
  24. Nett, C.N. (1986). Algebraic aspects of linear control system stability, IEEE Transactions on Automatic Control 31(10): 941-949.10.1109/TAC.1986.1104137
  25. Niemann, H.H. (2006). A setup for active fault diagnosis, IEEE Transactions on Automatic Control 51(9): 1572-1578.10.1109/TAC.2006.878724
  26. Niemann, H.H. (2012). A model-based approach to fault-tolerant control, International Journal of Applied Mathematics and Computer Science 22(1): 67-86, DOI: 10.2478/v10006-012-0005-x.10.2478/v10006-012-0005-x
  27. Poulsen, N.K. and Niemann, H. (2008). Active fault diagnosis based on stochastic tests, International Journal of Applied Mathematics and Computer Science 18(4): 487-496, DOI: 10.2478/v10006-008-0043-6.10.2478/v10006-008-0043-6
  28. Powell, W.B. (2007). Approximate Dynamic Programming: Solving the Curses of Dimensionality, Wiley-Interscience, Hoboken, NJ.10.1002/9780470182963
  29. Puig, V. (2010). Fault diagnosis and fault tolerant control using set-membership approaches: Application to real case studies, International Journal of Applied Mathematics and Computer Science 20(4): 619-635, DOI: 10.2478/v10006-010-0046-y.10.2478/v10006-010-0046-y
  30. Puterman, M.L. (2005). Markov Decision Processes-Discrete Stochastic Dynamic Programming, John Wiley & Sons, Hoboken, NJ.
  31. Scola, H.R., Nikoukhah, R. and Delebecque, F. (2003). Test signal design for failure detection: A linear programming approach, International Journal of Applied Mathematics and Computer Science 13(4): 515-526.
  32. Scott, J.K., Findeisen, R., Braatz, R.D. and Raimondo, D.M. (2013). Design of active inputs for set-based fault diagnosis, Proceedings of the 2013 American Control Conference, Washington, DC, USA, pp. 3561-3566. ˇS imandl, M., Kr´alovec, J. and S¨oderstr¨om, T. (2006). Advanced point-mass method for nonlinear state estimation, Automatica 42(7): 1133-1145. Šimandl,M. and Punčochář, I. (2009). Active fault detection and control: Unified formulation and optimal design, Automatica 45(9): 2052-2059. Simandl, M., Punčochář, I. and Královec, J. (2005). Rolling horizon for active fault detection, Proceedings of the 44th IEEE Conference on Decision and Control/European Control Conference 2005, Seville, Spain, pp. 3789-3794.
  33. Širokŷ, J., Šimandl, M., Axehill, D. and Punčochář, I. (2011). An optimization approach to resolve the competing aims of active fault detection and control, Proceedings of the 50th IEEE Conference on Decision and Control/European Control Conference, Orlando, FL, USA, pp. 3712-3717.
  34. Zhang, X.J. (1989). Auxiliary Signal Design in Fault Detection and Diagnosis, Springer-Verlag, Berlin. 10.1007/BFb0009313
DOI: https://doi.org/10.2478/amcs-2014-0059 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 795 - 807
Submitted on: Oct 18, 2013
Published on: Dec 20, 2014
Published by: University of Zielona Góra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2014 Ivo Punčochár, Miroslav Šmandl, published by University of Zielona Góra
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.