Have a personal or library account? Click to login
Efficiency analysis of control algorithms in spatially distributed systems with chaotic behavior Cover

Efficiency analysis of control algorithms in spatially distributed systems with chaotic behavior

By: Łukasz Korus  
Open Access
|Dec 2014

References

  1. Abarbanel, H. (1996). Analysis of Observed Chaotic Data, Springer-Verlag, New York, NY.10.1007/978-1-4612-0763-4
  2. Alsing, P.M., Gavrielides, A. and Kovanis, V. (1994). Using neural networks for controlling chaos, Physical Review E 49(2): 1225-1231.10.1103/PhysRevE.49.1225
  3. Andrievskii, B.R. and Fradkov, A.L. (2003). Control of chaos: Methods and applications, Automation and Remote Control 64(5): 673-713.10.1023/A:1023684619933
  4. Andrzejak, R.G., Lehnertz, K., Mormann, F., Rieke, C., David, P. and Elger, C.E. (2001). Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: Dependence on recording region and brain state, Physical Review E 64(1): 1-8.10.1103/PhysRevE.64.06190711736210
  5. Argoul, F., Arneodo, A., Richetti, P. and Roux, J.C. (1987). From quasiperiodicity to chaos in the Belousov-Zhabotinskii reaction, I: Experiment, Journal of Chemical Physics 86(6): 3325-3339.10.1063/1.452751
  6. Banerjee, S., Misra, A.P., Shukla, P.K. and Rondoni, L. (2010). Spatiotemporal chaos and the dynamics of coupled Langmuir and ion-acoustic waves in plasmas, Physical Review E 81(1): 1-10.10.1103/PhysRevE.81.04640520481845
  7. Bashkirtseva, I. and Ryashko, L. (2013). Attainability analysis in the problem of stochastic equilibria synthesis for nonlinear discrete systems, International Journal of Applied Mathematics and Computer Science 23(1): 5-16, DOI: 10.2478/amcs-2013-0001.10.2478/amcs-2013-0001
  8. Boukabou, A. and Mansouri, N. (2005). Predictive control of higher dimensional chaos, Nonlinear Phenomena in Complex Systems 8(3): 258-265.
  9. Chen, G. and Dong, X. (1993). On feedback control of chaotic continuous-time systems, IEEE Transactions on Circuits and Systems 40(9): 591-601.10.1109/81.244908
  10. Chen, Q., Teng, Z. and Hu, Z. (2013). Bifurcation and control for a discrete-time prey-predator model with Holling-IV functional response, International Journal of Applied Mathematics and Computer Science 23(2): 247-261, DOI: 10.2478/amcs-2013-0019.10.2478/amcs-2013-0019
  11. Chui, S.T. and Ma, K.B. (1982). Nature of some chaotic states for Duffing’s equation, Physical Review A 26(4): 2262-2265.10.1103/PhysRevA.26.2262
  12. Cordoba, A., Lemos, M.C. and Jimenez-Morales, F. (2006). Periodical forcing for the control of chaos in a chemical reaction, Journal of Chemical Physics 124(1): 1-6.10.1063/1.2141957
  13. Crutchfield, J.P. and Kaneko, K. (1987). Directions in Chaos: Phenomenology of Spatio-Temporal Chaos, World Scientific Publishing Co., Singapore.
  14. Dressler, U. and Nitsche, G. (1992). Controlling chaos using time delay coordinates, Physical Review Letters 68(1): 1-4.10.1103/PhysRevLett.68.1
  15. Gautama, T., Mandic, D.P. and Hulle, M.M.V. (2003). Indications of nonlinear structures in brain electrical activity, Physical Review E 67(1): 1-5.10.1103/PhysRevE.67.046204
  16. Govindan, R.B., Narayanan, K. and Gopinathan, M.S. (1998). On the evidence of deterministic chaos in ECG: Surrogate and predictability analysis, Chaos 8(2): 495-502.10.1063/1.166330
  17. Gunaratne, G.H., Lisnay, P.S. and Vinson, M.J. (1989). Chaos beyond onset: A comparison of theory and experiment, Physical Review Letters 63(1): 1-4.10.1103/PhysRevLett.63.1
  18. Held, G.A., Jeffries, C. and Haller, E.E. (1984). Observation of chaotic behavior in an electron-hole plasma in GE, Physical Review Letters 52(12): 1037-1040.10.1103/PhysRevLett.52.1037
  19. Kaneko, K. (1990). Simulating Physics with Coupled Map Lattices, World Scientific Publishing Co., Singapore.
  20. Korus, Ł. (2011). Simple environment for developing methods of controlling chaos in spatially distributed systems, International Journal of Applied Mathematics and Computer Science 21(1): 149-159, DOI: 10.2478/v10006-011-0011-4.10.2478/v10006-011-0011-4
  21. Langenberg, J., Pfister, G. and Abshagen, J. (2004). Chaos from Hopf bifurcation in a fluid flow experiment, Physical Review E 70(1): 1-5.10.1103/PhysRevE.70.046209
  22. Lasota, A. and Mackey, M. (1997). Chaos, Fractals, and Noise, Springer, New York, NY.
  23. Mitkowski, P.J. and Mitkowski, W. (2012). Ergodic theory approach to chaos: Remarks and computational aspects, International Journal of Applied Mathematics and Computer Science 22(2): 259-267, DOI: 10.2478/v10006-012-0019-4.10.2478/v10006-012-0019-4
  24. Ogorzałek, M.J., Galias, Z., Dabrowski, W. and Dabrowski, A. (1996a). Spatio-temporal co-operative phenomena in CNN arrays composed of chaotic circuits simulation experiments, International Journal of Circuit Theory and Applications 24(3): 261-268.10.1002/(SICI)1097-007X(199605/06)24:3<;261::AID-CTA914>3.0.CO;2-B
  25. Ogorzałek, M.J., Galias, Z., Dabrowski, W. and Dabrowski, A. (1996b). Wave propagation, pattern formation and memory effects in large arrays of interconnected chaotic circuits, International Journal of Bifurcation and Chaos 6(10): 1859-1871.10.1142/S0218127496001193
  26. Ott, E. (2002). Chaos in Dynamical Systems, Cambridge University Press, Cambridge.10.1017/CBO9780511803260
  27. Ott, E., Grebogi, C. and Yorke, J.A. (1990). Controlling chaos, Physical Review Letters 64(11): 1196-1199.10.1103/PhysRevLett.64.119610041332
  28. Parmananda, P. (1997). Controlling turbulence in coupled map lattice systems using feedback techniques, Physical Review E 56(1): 239-244.10.1103/PhysRevE.56.239
  29. Procaccia, I. and Meron, E. (1986). Low-dimensional chaos in surface waves: Theoretical analysis of an experiment, Physical Review A 34(4): 3221-3237.10.1103/PhysRevA.34.32219897641
  30. Pyragas, K. (2001). Control of chaos via an unstable delayed feedback controller, Physical Review Letters 86(11): 2265-2268.10.1103/PhysRevLett.86.226511289905
  31. Sauer, T., Yorke, J., and Casdagli, M. (1991). Embedology, Journal of Statistical Physics 65(3-4): 579-616.10.1007/BF01053745
  32. Singer, J., Wang, Y. and Haim, H.B. (1991). Controlling a chaotic system, Physical Review Letters 66(9): 1123-1125.10.1103/PhysRevLett.66.112310044001
  33. Stark, J. (1999). Delay embeddings for forced systems, I: Deterministic forcing, Jouranl of Nonlinear Science 9(3): 255-332.10.1007/s003329900072
  34. Takens, F. (1981). Detecting Strange Attractors in Turbulence, Springer-Verlag, Berlin.10.1007/BFb0091924
  35. Used, J. and Martin, J.C. (2010). Multiple topological structures of chaotic attractors ruling the emission of a driven laser, Physical Review E 82(1): 1-7.10.1103/PhysRevE.82.01621820866718
  36. Wei, W., Zonghua, L. and Bambi, H. (2000). Phase order in chaotic maps and in coupled map lattices, Physical Review Letters 84(12): 2610-2613.10.1103/PhysRevLett.84.261011017281
  37. Yamada, T. and Graham, R. (1980). Chaos in a laser system under a modulated external field, Physical Review Letters 45(16): 1322-1324.10.1103/PhysRevLett.45.1322
  38. Yim, G., Ryu, J., Park, Y., Rim, S., Lee, S., Kye, W. and Kim, C. (2004). Chaotic behaviors of operational amplifiers, Physical Review E 69(1): 1-4. 10.1103/PhysRevE.69.04520115169058
DOI: https://doi.org/10.2478/amcs-2014-0056 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 759 - 770
Submitted on: Jul 7, 2013
Published on: Dec 20, 2014
Published by: University of Zielona Góra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2014 Łukasz Korus, published by University of Zielona Góra
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.