Have a personal or library account? Click to login
Minimum energy control of fractional descriptor positive discrete-time linear systems Cover

Minimum energy control of fractional descriptor positive discrete-time linear systems

Open Access
|Dec 2014

References

  1. Busłowicz, M. (2008). Stability of linear continuous time fractional order systems with delays of the retarded type, Bulletin of the Polish Academy of Sciences: Technical Sciences 56(4): 319-324.
  2. Dzieliński, A. and Sierociuk, D. (2008). Stability of discrete fractional order state-space systems, Journal of Vibrations and Control 14(9/10): 1543-1556.10.1177/1077546307087431
  3. Dzieliński, A., Sierociuk, D. and Sarwas, G. (2009).
  4. Ultracapacitor parameters identification based on fractional order model, Proceedings of ECC’09, Budapest, Hungary, pp. 196-200.
  5. Farina, L. and Rinaldi, S. (2000). Positive Linear Systems: Theory and Applications, J. Wiley, New York, NY.10.1002/9781118033029
  6. Kaczorek, T. (1992). Linear Control Systems, Research Studies Press/J. Wiley, New York, NY.
  7. Kaczorek, T. (2001). Positive 1D and 2D Systems, Springer-Verlag, London.10.1007/978-1-4471-0221-2
  8. Kaczorek, T. (2008a). Fractional positive continuous-time systems and their reachability, International Journal of Applied Mathematics and Computer Science 18(2): 223-228, DOI: 10.2478/v10006-008-0020-0.10.2478/v10006-008-0020-0
  9. Kaczorek, T. (2008b). Practical stability of positive fractional discrete-time linear systems, Bulletin of the Polish Academy of Sciences: Technical Sciences 56(4): 313-318.10.2478/v10175-010-0143-y
  10. Kaczorek, T. (2008c). Reachability and controllability to zero tests for standard and positive fractional discrete-time systems, Journal Européen des Systèmes Automatisés 42(6-8): 769-787.10.3166/jesa.42.769-787
  11. Kaczorek, T. (2009). Asymptotic stability of positive fractional 2D linear systems, Bulletin of the Polish Academy of Sciences: Technical Sciences 57(3): 289-292.10.2478/v10175-010-0131-2
  12. Kaczorek, T. (2011a). Controllability and observability of linear electrical circuits, Electrical Review 87(9a): 248-254.
  13. Kaczorek, T. (2011b). Positivity and reachability of fractional electrical circuits, Acta Mechanica et Automatica 5(2): 42-51.
  14. Kaczorek, T. (2011c). Positive linear systems consisting of n subsystems with different fractional orders, IEEE Transactions on Circuits and Systems 58(6): 1203-1210.10.1109/TCSI.2010.2096111
  15. Kaczorek, T. (2011d). Checking of the positivity of descriptor linear systems by the use of the shuffle algorithm, Archives of Control Sciences 21(3): 287-298.10.2478/v10170-010-0044-1
  16. Kaczorek, T. (2012). Selected Problems of Fractional Systems Theory, Springer-Verlag, Berlin.10.1007/978-3-642-20502-6
  17. Kaczorek, T. (2013a). Minimum energy control of fractional positive continuous-time linear systems, MMAR Conference, Mi˛edzyzdroje, Poland, pp. 622-626.10.1109/MMAR.2013.6669982
  18. Kaczorek, T. (2013b). Minimum energy control of descriptor positive discrete-time linear systems, COMPEL 33(2): 1-14.10.2478/acsc-2013-0012
  19. Kaczorek, T. and Klamka, J. (1986). Minimum energy control of 2D linear systems with variable coefficients, International Journal of Control 44(3): 645-650.10.1080/00207178608933623
  20. Klamka J., (1976). Relative controllability and minimum energy control of linear systems with distributed delays in control, IEEE Transactions on Automatic Control 21(4): 594-595.10.1109/TAC.1976.1101280
  21. Klamka, J. (1983). Minimum energy control of 2D systems in Hilbert spaces, System Sciences 9(1-2): 33-42.
  22. Klamka, J. (1991). Controllability of Dynamical Systems, Kluwer Academic Press, Dordrecht.
  23. Klamka, J. (2010). Controllability and minimum energy control problem of fractional discrete-time systems, in D. Baleanu, Z.B. Guvenc and J.A. Tenreiro Machado (Eds.), New Trends in Nanotechnology and Fractional Calculus, Springer-Verlag, New York, NY, pp. 503-509.10.1007/978-90-481-3293-5_45
  24. Oldham, K.B. and Spanier, J. (1974). The Fractional Calculus, Academic Press, New York, NY.
  25. Ostalczyk, P. (2008). Epitome of the Fractional Calculus: Theory and Its Applications in Automatics, Technical University of Łódź Press, Łódź, (in Polish).
  26. Podlubny, I. (1999). Fractional Differential Equations, Academic Press, San Diego, CA.
  27. Radwan, A.G., Soliman, A.M., Elwakil, A.S. and Sedeek, A. (2009). On the stability of linear systems with fractional-order elements, Chaos, Solitons and Fractals 40(5): 2317-2328.10.1016/j.chaos.2007.10.033
  28. Tenreiro Machado J.A., Ramiro Barbosa S., (2006). Functional dynamics in genetic algorithms, Workshop on Fractional Differentiation and Its Application, Porto, Portugal, Vol. 1, pp. 439-444.
  29. Vinagre B.M., Monje C.A., Calderon A.J. (2002). Fractional order systems and fractional order control actions, IEEE CDC’02, Las Vegas, NV, USA, TW#2, Lecture 3.
DOI: https://doi.org/10.2478/amcs-2014-0054 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 735 - 743
Submitted on: Nov 21, 2013
Published on: Dec 20, 2014
Published by: University of Zielona Góra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2014 Tadeusz Kaczorek, published by University of Zielona Góra
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.