Have a personal or library account? Click to login
Controllability of nonlinear implicit fractional integrodifferential systems Cover

Controllability of nonlinear implicit fractional integrodifferential systems

Open Access
|Dec 2014

References

  1. Anichini, G., Conti, G. and Zecca, P. (1986). A note on controllability of certain nonlinear system, Note di Mathematica 6(2): 99-111.
  2. Balachandran, K. (1988). Controllability of nonlinear systems with implicit derivatives, IMA Journal of Mathematical Control and Information 5(2): 77-83.10.1093/imamci/5.2.77
  3. Balachandran, K. and Dauer, J.P. (1987). Controllability of nonlinear systems via fixed point theorems, Journal of Optimization Theory and Applications 53(3): 345-352.10.1007/BF00938943
  4. Balachandran, K. and Balasubramaniam, P. (1992). A note on controllability of nonlinear Volterra integrodifferential systems, Kybernetika 28(4): 284-291.
  5. Balachandran, K. and Balasubramaniam, P. (1994).
  6. Controllability of nonlinear neutral Volterra integrodifferential systems, Journal of the Australian Mathematical Society 36(1): 107-116.10.1017/S0334270000010274
  7. Balachandran, K. and Kokila, J. (2012a). On the controllability of fractional dynamical systems, International Journal of Applied Mathematics and Computer Science 22(3): 523-531, DOI: 10.2478/v10006-012-0039-0.10.2478/v10006-012-0039-0
  8. Balachandran, K. and Kokila, J. (2013a). Constrained controllability of fractional dynamical systems, Numerical Functional Analysis and Optimization 34(11): 1187-1205.10.1080/01630563.2013.778868
  9. Balachandran, K. and Kokila, J. (2013b). Controllability of nonlinear implicit fractional dynamical systems, IMA Journal of Applied Mathematics 79(3): 562-570.10.1093/imamat/hxt003
  10. Balachandran, K., Kokila, J. and Trujillo, J.J. (2012b).
  11. Relative controllability of fractional dynamical systems with multiple delays in control, Computers and Mathematics with Applications 64(10): 3037-3045.10.1016/j.camwa.2012.01.071
  12. Balachandran, K., Park, J.Y. and Trujillo, J.J. (2012c).
  13. Controllability of nonlinear fractional dynamical systems, Nonlinear Analysis: Theory, Methods and Applications 75(4): 1919-1926.10.1016/j.na.2011.09.042
  14. Balachandran, K., Zhou, Y. and J. Kokila, J. (2012d). Relative controllability of fractional dynamical systems with delays in control, Communications in Nonlinear Science and Numerical Simulation 17(9): 3508-3520.10.1016/j.cnsns.2011.12.018
  15. Burton, T.A. (1983). Volterra Integral and Differential Equations, Academic Press, New York, NY.
  16. Caputo, M. (1967). Linear model of dissipation whose Q is almost frequency independent, Part II, Geophysical Journal of Royal Astronomical Society 13(5): 529-539.10.1111/j.1365-246X.1967.tb02303.x
  17. Dacka, C. (1980). On the controllability of a class of nonlinear systems, IEEE Transaction on Automatic Control 25(2): 263-266.10.1109/TAC.1980.1102287
  18. Kaczorek, K. (2011). Selected Problems of Fractional Systems Theory, Springer, Berlin.10.1007/978-3-642-20502-6
  19. Kexue, L. and Jigen, P. (2011). Laplace transform and fractional differential equations, Applied Mathematics Letters 24(12): 2019-2013.10.1016/j.aml.2011.05.035
  20. Kilbas, A.A., Srivastava, H.M. and Trujillo, J.J. (2006). Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam.
  21. Klamka, J. (1975a). On the global controllability of perturbed nonlinear systems, IEEE Transactions on Automatic Control AC-20(1): 170-172.10.1109/TAC.1975.1100870
  22. Klamka, J. (1975b). On the local controllability of perturbed nonlinear systems, IEEE Transactions on Automatic Control AC-20(2): 289-291.10.1109/TAC.1975.1100929
  23. Klamka, J. (1975c). Controllability of nonlinear systems with delays in control, IEEE Transactions on Automatic Control AC-20(5): 702-704.10.1109/TAC.1975.1101046
  24. Klamka, J. (1993). Controllability of Dynamical Systems, Kluwer Academic, Dordrecht.
  25. Klamka, J. (1999). Constrained controllability of dynamic systems, International Journal of Applied Mathematics and Computer Science 9(2): 231-244.
  26. Klamka, J. (2000). Schauder’s fixed-point theorem in nonlinear controllability problems, Control and Cybernetics 29(1): 153-165.
  27. Klamka, J. (2001). Constrained controllability of semilinear delayed systems, Bulletin of the Polish Academy of Sciences: Technical Sciences 49(3): 505-515.
  28. Klamka, J. (2008). Constrained controllability of semilinear systems with delayed controls, Bulletin of the Polish Academy of Sciences: Technical Sciences 56(4): 333-337.
  29. Klamka, J. (2010). Controllability and minimum energy control problem of fractional discrete time systems, in D. Baleanu, Z.B. Guvenc, and J.A.T. Machado (Eds.), New Trends in Nanotechnology and Fractional Calculus, Springer-Verlag, New York, NY, pp. 503-509.10.1007/978-90-481-3293-5_45
  30. Miller, K.S. and Ross, B. (1993). An Introduction to the Fractional Calculus and Fractional Differential Equations, Wiley, New York, NY.
  31. Mittal, R.C. and Nigam, R. (2008). Solution of fractional integrodifferential equations by Adomian decomposition method, International Journal of AppliedMathematics and Mechanics 4(2): 87-94.
  32. Oldham, K.B and Spanier, J. (1974). The Fractional Calculus, Academic Press, London.
  33. Olmstead, W.E. and Handelsman, R.A. (1976). Diffusion in a semi-infinite region with nonlinear surface dissipation, SIAM Review 18(2): 275-291.10.1137/1018044
  34. Podlubny, I. (1999). Fractional Differential Equations, Academic Press, New York, NY.
DOI: https://doi.org/10.2478/amcs-2014-0052 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 713 - 722
Submitted on: Nov 5, 2013
Published on: Dec 20, 2014
Published by: University of Zielona Góra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2014 Krishnan Balachandran, Shanmugam Divya, published by University of Zielona Góra
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.