Have a personal or library account? Click to login

References

  1. Abbeel, P., Koller, D. and Ng, A.Y. (2006). Learning factor graphs in polynomial time and sample complexity, Journal of Machine Learning Research 7: 1743-1788.
  2. Gámez, J.A., Mateo, J.L. and Puerta, J.M. (2008). Improved EDNA (estimation of dependency networks algorithm) using combining function with bivariate probability distributions, Proceedings of the 10th Annual Conference on Genetic and Evolutionary Computation, GECCO’08, Atlanta, GA, USA, pp. 407-414.
  3. Kschischang, F.R., Frey, B.J. and Loeliger, H.A. (2001). Factor graphs and the sum-product algorithm, IEEE Transactions on Information Theory 47(2): 498-519.10.1109/18.910572
  4. Kuang, D., Park, H. and Ding, C.H.Q. (2012). Symmetric nonnegative matrix factorization for graph clustering, Proceedings of the 12 SIAM International Conference on Data Mining, Anaheim, CA, USA, pp. 106-117.
  5. Larrañaga, P. and Lozano, J.A. (2001). Estimation of Distribution Algorithms: A New Tool for Evolutionary Computation, Kluwer Academic Publishers, Norwell, MA.10.1007/978-1-4615-1539-5
  6. Lee, D.D. and Seung, H.S. (2001). Algorithms for non-negative matrix factorization, in T.K. Leen, T.G. Dietterich and V. Tresp (Eds.), Advances in Neural Information Processing Systems 13, MIT Press, Cambridge, MA, pp. 556-562.
  7. Mahnig, T. and M¨uhlenbein, H. (1999). FDA-a scalable evolutionary algorithm for the optimization of additively decomposed functions, Evolutionary Computation, 7(4): 353-376.10.1162/evco.1999.7.4.35310578027
  8. Mendiburu, A., Santana, R. and Lozano, J.A. (2007). Introducing belief propagation in estimation of distribution algorithms: A parallel approach, Technical Report EHUKAT- IK-11-07, University of the Basque Country, Bilbao.
  9. Miquelez, T., Bengoetxea, E. and Larra˜naga, P. (2004). Evolutionary computation based on Bayesian classifiers, International Journal of Applied Mathematics and Computer Science 14(3): 335-349.
  10. Mühlenbein, H. (2008). Convergence of estimation of distribution algorithms for finite samples, Technical report, Fraunhofer Institute for Autonomous Intelligent Systems, Sankt Augustin.
  11. Mühlenbein, H. (2012). Convergence theorems of estimation of distribution algorithms, in S. Shakya and R. Santana (Eds.), Markov Networks in Evolutionary Computation, Adaptation, Learning, and Optimization, Vol. 14, Springer, Berlin/Heidelberg, pp. 91-108.10.1007/978-3-642-28900-2_6
  12. Mühlenbein, H. and Paaß, G. (1996). From recombination of genes to the estimation of distributions, I: Binary parameters, in H.M. Voigt, W. Ebeling, I. Rechenberger and H.P. Schwefel (Eds.), Parallel Problem Solving from Nature IV, Vol. 1141, Lecture Notes in Computer Science, Springer-Verlag, London, pp. 178-187.10.1007/3-540-61723-X_982
  13. Munetomo, M. and Goldberg, D.E. (1999). Identifying linkage groups by nonlinearity/nonmonotonicity detection, Genetic and Evolutionary Computation Conference (GECCO-99), Orlando, FL, USA, pp. 433-440.
  14. Pelikan, M. (2005). Hierarchical Bayesian Optimization Algorithm, Springer-Verlag, Berlin/Heidelberg.10.1007/b10910
  15. Pelikan, M., Goldberg, D.E. and Lobo, F.G. (2002). A survey of optimization by building and using probabilistic models, Computational Optimization and Applications 21(1): 5-20.10.1023/A:1013500812258
  16. Pelikan, M., Hauschild, M., and Thierens, D. (2011). Pairwise and problem-specific distance metrics in the linkage tree genetic algorithm, MEDAL Report No. 2011001, University of Missouri at St. Louis, St. Louis, MO.
  17. Santana, R., Larraaga, P. and Lozano, J. (2008). Adaptive estimation of distribution algorithms, in C. Cotta, M. Sevaux and K. Srensen (Eds.), Adaptive and Multilevel Metaheuristics, Studies in Computational Intelligence, Vol. 136, Springer, Berlin/Heidelberg, pp. 177-197.10.1007/978-3-540-79438-7_9
  18. Sastry, K. and Goldberg, D. (2004). Designing competent mutation operators via probabilistic model building of neighborhoods, in K. Deb (Ed.), Genetic and Evolutionary Computation, GECCO 2004, Lecture Notes in Computer Science, Vol. 3103, Springer, Berlin/Heidelberg, pp. 114-125.10.1007/978-3-540-24855-2_11
  19. Sastry, K. and Goldberg, D. E. (2000). On extended compact genetic algorithm, IlliGAL Report No. 2000026, University of Illinois at Urbana-Champaign, Urbana, IL.
  20. Thierens, D. (2010). Linkage tree genetic algorithm: First results, Proceedings of the 12th Annual Conference Companion on Genetic and Evolutionary Computation (GECCO’10), Portland, OR, USA, pp. 1953-1958.
  21. Yu, K., Yu, S. and Tresp, V. (2006). Soft clustering on graphs, in Y. Weiss, B. Sch¨olkopf and J. Platt (Eds.), Advances in Neural Information Processing Systems 18, MIT Press, Cambridge, MA, pp. 1553-1560.
  22. Yu, T.-L. (2006). A Matrix Approach for Finding Extrema: Problems with Modularity, Hierarchy, and Overlap, Ph.D. thesis, University of Illinois at Urbana-Champaign, Champaign, IL.
  23. Yu, T.-L. and Goldberg, D.E. (2006). Conquering hierarchical difficulty by explicit chunking: Substructural chromosome compression, 8th Annual Conference on Genetic and Evolutionary Computation, (GECCO-2006), Seattle, WA, USA, pp. 1385-1392.
  24. Yu, T.-L., Sastry, K., Goldberg, D. E. and Pelikan, M. (2007). Population sizing for entropy-based model building in discrete estimation of distribution algorithms, Proceedings of the 9th Annual Conference on Genetic and Evolutionary Computation, GECCO ’07, London, UK, pp. 601-608.
  25. Zhou, D., Sch¨olkopf, B. and Hofmann, T. (2005). Semi-supervised learning on directed graphs, in L.K.
  26. Saul, Y. Weiss and L. Bottou (Eds.), Advances in Neural Information Processing Systems 17, MIT Press, Cambridge, MA, pp. 1633-1640.
DOI: https://doi.org/10.2478/amcs-2014-0045 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 621 - 633
Submitted on: Jun 23, 2013
Published on: Sep 25, 2014
Published by: Sciendo
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2014 B. Hoda Helmi, Adel T. Rahmani, Martin Pelikan, published by Sciendo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.