Babb, J. and Currie, J. (2008). The brachistochrone problem: Mathematics for a broad audience via a large context problem, The Montana Mathematics Enthusiast 5(2-3): 169-183.10.54870/1551-3440.1099
Brodie, M. (2009). Development of Fusion Motion Capture for Optimisation of Performance in Alpine Ski Racing, Ph.D. thesis, Massey University, Wellington.
Byrski, A., D˛ebski, R. and Kisiel-Dorohinicki, M. (2012). Agent-based computing in an augmented cloud environment, Computer Systems Science and Engineering 27(1): 7-18.
Ceriotti, M. and Vasile, M. (2010). MGA trajectory planning with an ACO-inspired algorithm, Acta Astronautica 67(9-10): 1202-1217.10.1016/j.actaastro.2010.07.001
Crauser, A., Mehlhorn, K., Meyer, U. and Sanders, P. (1998). A parallelization of Dijkstra’s shortest path algorithm, in L. Brim, J. Gruska and J. Zlatuška (Eds.), Mathematical Foundations of Computer Science, Springer, London, pp. 722-731.10.1007/BFb0055823
Debski, R., Krupa, T. and Majewski, P. (2013). ComcuteJS: A web browser based platform for large-scale computations, Computer Science 14(1): 143-152.10.7494/csci.2013.14.1.143
Dramski, M. (2012). A comparison between Dijkstra algorithm and simplified ant colony optimization in navigation, Zeszyty Naukowe, Maritime University of Szczecinie 29(101): 25-29.
Gaster, B.R., Howes, L.W., Kaeli, D.R.,Mistry, P. and Schaa, D. (2013). Heterogeneous Computing with OpenCL-Revised OpenCL 1.2 Edition, Morgan Kaufmann, Waltham, MA.
Harish, P. and Narayanan, P. (2007). Accelerating large graph algorithms on the GPU using CUDA, in S. Aluru, M. Parashar, R. Badrinath and V. Prasanna (Eds.), High Performance Computing-HiPC 2007, Springer, Berlin, pp. 197-208.10.1007/978-3-540-77220-0_21
Jasika, N., Alispahic, N., Elma, A., Ilvana, K., Elma, L. and Nosovic, N. (2012). Dijkstra’s shortest path algorithm serial and parallel execution performance analysis, Proceedings of the 35th International Convention, MIPRO 2012, Opatija, Croatia, pp. 1811-1815.
Kaps, P., Nachbauer,W. and Mossner, M. (1996). Determination of kinetic friction and drag area in alpine skiing, in C. Mote, R. Johnson and W. Hauser (Eds.), Ski Trauma and Skiing Safety, Vol. 10, American Society for Testing and Materials, Philadelphia, PA, pp. 165-177.10.1520/STP37926S
Lewis, R.M., Torczon, V. and Trosset, M.W. (2000). Direct search methods: Then and now, Journal of Computational and Applied Mathematics 124(1-2): 191-207.10.1016/S0377-0427(00)00423-4
Pontryagin, L.S., Boltyanski, V.G., Gamkrelidze, R.V. and Mischenko, E.F. (1962). TheMathematical Theory of Optimal Processes, Interscience, New York, NY.
Pošík, P. and Huyer, W. (2012). Restarted local search algorithms for continuous black box optimization, Evolutionary Computation 20(4): 575-607.10.1162/EVCO_a_0008722779407
Pošík, P., Huyer, W. and Pál, L. (2012). A comparison of global search algorithms for continuous black box optimization, Evolutionary Computation 20(4): 509-541.10.1162/EVCO_a_0008422708992
Rippel, E., Bar-Gill, A. and Shimkin, N. (2005). Fast graph-search algorithms for general-aviation flight trajectory generation, Journal of Guidance, Control, and Dynamics 28(4): 801-811.10.2514/1.7370
Singla, G., Tiwari, A. and Singh, D.P. (2013). New approach for graph algorithms on GPU using CUDA, International Journal of Computer Applications 72(18): 38-42.
Sussmann, H.J. and Willems, J.C. (1997). 300 years of optimal control: From the brachystochrone to the maximum principle, IEEE Control Systems 17(3): 32-44.10.1109/37.588098
Sussmann, H.J. and Willems, J.C. (2002). The brachistochrone problem and modern control theory, Contemporary Trends in Nonlinear Geometric Control Theory and Its Applications, Mexico City, Mexico, pp. 113-166.
Szłapczy´nski, R. and Szłapczy´nska, J.(2012). Customized crossover in evolutionary sets of safe ship trajectories, International Journal of Applied Mathematics and Computer Science 22(4): 999-1009, DOI: 10.2478/v10006-012-0074-x.10.2478/v10006-012-0074-x
Szynkiewicz, W. and Błaszczyk, J. (2011). Optimization-based approach to path planning for closed chain robot systems, International Journal of Applied Mathematics and Computer Science 21(4): 659-670, DOI: 10.2478/v10006-011-0052-8.10.2478/v10006-011-0052-8
Vanderbei, R.J. (2001). Case studies in trajectory optimization: Trains, planes, and other pastimes, Optimization and Engineering 2(2): 215-243.10.1023/A:1013145328012
Vasile, M. and Locatelli, M. (2009). A hybrid multiagent approach for global trajectory optimization, Journal of Global Optimization 44(4): 461-479. von Stryk, O. and Bulirsch, R. (1992). Direct and indirect methods for trajectory optimization, Annals of Operations Research 37(1): 357-373.
Wuerl, A., Crain, T. and Braden, E. (2003). Genetic algorithm and calculus of variations-based trajectory optimization technique, Journal of Spacecraft and Rockets 40(6): 882-888.10.2514/2.7053
Yokoyama, N. (2002). Trajectory optimization of space plane using genetic algorithm combined with gradient method, 23rd International Congress of Aeronautical Sciences, Toronto, Canada, pp. 513.1-513.10.