Have a personal or library account? Click to login

Analysis of an MMAP/PH1, PH2/N/∞ queueing system operating in a random environment

Open Access
|Sep 2014

References

  1. Aksin, O., Armony, M. and Mehrotra, V. (2007). The modern call centers: A multi-disciplinary perspective on operations management research, Production and Operation Management 16(6): 655-688.10.1111/j.1937-5956.2007.tb00288.x
  2. Al-Begain, K., Dudin, A., Kazimirsky, A. and Yerima, S. (2009). Investigation of the M2/G2/1/∞,N queue with restricted admission of priority customers and its application to HSDPA mobile systems, Computer Networks 53(6): 1186-1201.10.1016/j.comnet.2009.02.017
  3. Al-Begain, K., Dudin, A. and Mushko, V. (2006). Novel queueing model for multimedia over downlink in 3.5g wireless network, Journal of Communication Software and Systems 2(2): 68-80.
  4. Chakravarthy, S. (2001). The batch Markovian arrival process: A review and future work, in A. Krishnamoorthy, N. Raju and V. Ramaswami (Eds.), Advances in Probability Theory and Stochastic Processes, Notable Publications, Neshanic Station, NJ, pp. 21-49.
  5. Chydziński, A. and Chròst, Ł. (2011). Analysis of AQM queues with queue size based packet dropping, International Journal of Applied Mathematics and Computer Science 21(3): 567-577, DOI: 10.2478/v10006-011-0045-7.10.2478/v10006-011-0045-7
  6. Dudin, A., Osipov, E., Dudin, S. and Schelen, O. (2013a). Socio-behavioral scheduling of time-frequency resources for modern mobile operators, Communications in Computer and Information Science 356: 69-82.10.1007/978-3-642-35980-4_9
  7. Dudin, S., Kim, C. and Dudina, O. (2013b). MMAP/M/N queueing system with impatient heterogeneous customers as a model of a contact center, Computers and Operations Research 40(7): 1790-1803.10.1016/j.cor.2013.01.023
  8. Graham, A. (1981). Kronecker Products and Matrix Calculus with Applications, Ellis Horwood, Chichester.
  9. Jouini, O., Aksin, Z. and Dallery, Y. (2011). Call centers with delay information: Models and insights, Manufacturing & Service Operations Management 13(4): 534-548.10.1287/msom.1110.0339
  10. Jouini, O., Dallery, Y. and Aksin, Z. (2009). Queuing models for flexible multi-class call centers with real-time anticipated delays, International Journal of Production Economics 120(2): 389-399.10.1016/j.ijpe.2008.01.011
  11. Kesten, H. and Runnenburg, J. (1956). Priority in Waiting Line Problems, Mathematisch Centrum, Amsterdam.10.1016/S1385-7258(57)50042-5
  12. Kim, C., Dudin, A., Klimenok, V. and Khramova, V. (2010a). Erlang loss queueing system with batch arrivals operating in a random environment, Computers and Operations Research 36(3): 674-697.10.1016/j.cor.2007.10.022
  13. Kim, C., Klimenok, V., Mushko, V. and Dudin, A. (2010b). The BMAP/PH/N retrial queueing system operating in Markovian random environment, Computers and Operations Research 37(7): 1228-1237.10.1016/j.cor.2009.09.008
  14. Kim, C., Dudin, S., Dudin, A. and Dudina, O. (2013a). Queueing system MAP/PH/N/R with session arrivals operating in random environment, Communications in Computer and Information Science 370: 406-415.10.1007/978-3-642-38865-1_41
  15. Kim, C., Dudin, S., Taramin, O. and Baek, J. (2013b). Queueing systemMMAP/PH/N/N+R with impatient heterogeneous customers as a model of call center, Applied Mathematical Modelling 37(3): 958-976.10.1155/2013/983723
  16. Kim, C., Klimenok, V., Lee, S. and Dudin, A. (2007). The BMAP/PH/1 retrial queueing system operating in random environment, Journal of Statistical Planning and Inference 137(12): 3904-3916.10.1016/j.jspi.2007.04.009
  17. Kim, J. and Park, S. (2010). Outsourcing strategy in two-stage call centers, Computers and Operations Research 37(4): 790-805.10.1016/j.cor.2009.06.020
  18. Klimenok, V. and Dudin, A. (2006). Multi-dimensional asymptotically quasi-Toeplitz Markov chains and their application in queueing theory, Queueing Systems 54(4): 245-259.10.1007/s11134-006-0300-z
  19. Krieger, U., Klimenok, V., Kazimirsky, A., Breuer, L. and Dudin, A. (2005). ABMAP/PH/1 queue with feedback operating in a random environment, Mathematical and Computer Modelling 41(8-9): 867-882.10.1016/j.mcm.2004.11.002
  20. Lucantoni, D. (1991). New results on the single server queue with a batch Markovian arrival process, Communication in Statistics-Stochastic Models 7(1): 1-46.10.1080/15326349108807174
  21. Neuts, M. (1981). Matrix-geometric Solutions in Stochastic Models-An Algorithmic Approach, Johns Hopkins University Press, Baltimore, MD.
  22. Olwal, T., Djouani, K., Kogeda, O. and van Wyk, B. (2012). Joint queue-perturbed and weakly coupled power control for wireless backbone networks, International Journal of Applied Mathematics and Computer Science 22(3): 749-764, DOI: 10.2478/v10006-012-0056-z. van Danzig, D. (1955). Chaines de markof dans les ensembles abstraits et applications aux processus avec regions absorbantes et au probleme des boucles, Annals de l’Institute H. Pioncare 14(3): 145-199.
DOI: https://doi.org/10.2478/amcs-2014-0036 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 485 - 501
Submitted on: Aug 19, 2013
Published on: Sep 25, 2014
Published by: University of Zielona Góra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2014 Chesoong Kim, Alexander Dudin, Sergey Dudin, Olga Dudina, published by University of Zielona Góra
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.