Artalejo, J. (1994). New results in retrial queueing systems with breakdown of the servers, Statistica Neerlandica 48(1): 23-36.10.1111/j.1467-9574.1994.tb01429.x
Artalejo, J. (2000). G-networks: A versatile approach for work removal in queueing networks, European Journal of Operational Research 126(2): 233-249.10.1016/S0377-2217(99)00476-2
Atencia, I., Fortes, I., Pechinkin, A. and S´anchez, S. (2013a). A discrete-time queueing system with different types of displacement, 27th European Conference on Modelling and Simulation, Alesund, Norway, pp. 558-564.10.7148/2013-0558
Atencia, I., Fortes, I. and S´anchez, S. (2013b). Discrete-time queueing system with expulsions, Communications in Computer and Information Science 356(1): 20-25.10.1007/978-3-642-35980-4_3
Atencia, I. and Moreno, P. (2004). The discrete-time Geo/Geo/1 queue with negative customers and disasters, Computers and Operations Research 31(9): 1537-1548.10.1016/S0305-0548(03)00107-2
Atencia, I. and Moreno, P. (2005). A single-server G-queue in discrete-time with geometrical arrival and service process, Performance Evaluation 59(1): 85-97.10.1016/j.peva.2004.07.019
Atencia, I. and Pechinkin, A. (2012). A discrete-time queueing system with optional LCFS discipline, Annals Operation Research 202(1): 3-17.10.1007/s10479-012-1097-2
Bruneel, H. and Kim, B. (1993). Discrete-time Models for Communication Systems Including ATM, Kluwer Academic Publishers, Boston, MA.10.1007/978-1-4615-3130-2
Cascone, A., Manzo, P., Pechinkin, A. and Shorgin, S. (2011). A Geom/G/1/n system with a LIFO discipline without interruptions in the service and with a limitation for the total capacity for the customers, Avtomatika i Telemejanika 1(1): 107-120, (in Russian).10.1134/S0005117911010085
Fiems, D., Steyaert, B. and Bruneel, H. (2002). Randomly interrupted GI/G/1 queues: Service strategies and stability issues, Annals of Operations Research 112(1-4): 171-183.10.1023/A:1020937324199
Fiems, D., Steyaert, B. and Bruneel, H. (2004). Discrete-time queues with generally distributed service times and renewal-type server interruptions, Performance Evaluation 55(3-4): 277-298.10.1016/j.peva.2003.08.004
Gelenbe, E. and Label, A. (1998). G-networks with multiple classes of signals and positive customers, European Journal of Operational Research 108(2): 293-305.10.1016/S0377-2217(97)00371-8
Gravey, A. and H´ebuterne, G. (1992). Simultaneity in discrete-time single server queues with Bernoulli inputs, Performance Evaluation 14(2): 123-131.10.1016/0166-5316(92)90014-8
Harrison, P.G., Patel, N.M. and Pitel, E. (2000). Reliability modelling using g-queues, European Journal of Operational Research 126(2): 273-287.10.1016/S0377-2217(99)00478-6
Kendall, D. (1951b). Stochastic processes occurring in the theory of queues and their analysis by the method of imbedded Markov chains, Annals of Mathematical Statistics 24(3): 338-354.10.1214/aoms/1177728975
Kleinrock, L. (1976). Queueing Systems, Vol. 2, John Wiley and Sons, New York, NY. Krishna Kumar, B., Pavai Madheswari, S. and Vijayakumar, A. (2002). The M/G/1 retrial queue with feedback and starting failures, Applied Mathematical Modelling 26(11): 1057-1075.
Krishnamoorthy, A., Pramod, P. and Deepak, T. (2009). On a queue with interruptions and repeat or resumption of service, Nonlinear Analysis: Theory, Methods & Applications 71(12): 1673-1683.10.1016/j.na.2009.02.056
Morozov, E., Fiems, D. and Bruneel, H. (2011). Stability analysis of multiserver discrete-time queueing systems with renewal-type server interruptions, Performance Evaluation 68(12): 1261-1275.10.1016/j.peva.2011.07.002
Oniszczuk, W. (2009). Semi-Markov-based approach for the analysis of open tandem networks with blocking and truncation, International Journal of Applied Mathematics and Computer Science 19(1): 151-163, DOI: 10.2478/v10006-009-0014-6.10.2478/v10006-009-0014-6
Park, H.M., Yang, W.S. and Chae, K.C. (2009). The Geo/G/1 queue with negative customers and disasters, Stochastic Models 25(4): 673-688.10.1080/15326340903291347
Pechinkin, A. and Shorgin, S. (2008). A Geo/G/1/∞ system with a non-standard discipline for the service, Informatics and Its Applications 2(1): 55-62, (in Russian).
Pechinkin, A. and Svischeva, T. (2004). The stationary state probability in the BMAP/G/1/r queueing system with inverse discipline and probabilistic priority, Transactions of the XXIV International Seminar on Stability Problems for Stochastic Models, Jurmala, Latvia, pp. 141-174. Pi´orkowski, A. and Werewka, J. (2010). Minimization of the total completion time for asynchronous transmission in a packet data-transmission system, International Journal of Applied Mathematics and Computer Science 20(2): 391-400, DOI: 10.2478/v10006-010-0029-z.10.2478/v10006-010-0029-z
Vinck, B. and Bruneel, H. (2006). System delay versus system content for discrete-time queueing systems subject to server interruptions, European Journal of Operational Research 175(1): 362-375.10.1016/j.ejor.2005.03.046
Yang, T. and Li, H. (1995). On the steady-state queue size distribution of the discrete-time Geo/G/1 queue with repeated customers, Queueing Systems 21(1-2): 199-215 10.1007/BF01158581