Have a personal or library account? Click to login

Fitting traffic traces with discrete canonical phase type distributions and Markov arrival processes

Open Access
|Sep 2014

References

  1. Alfa, A. (2002). Discrete time queues and matrix-analytic methods, Top 10(2): 147-185.10.1007/BF02579008
  2. Bodrog, L., Heindl, A., Horv´ath, G. and Telek, M. (2008). A Markovian canonical form of second-order matrix-exponential processes, European Journal of Operation Research 190: 459-47710.1016/j.ejor.2007.06.020
  3. Horváth, G. and Telek,M. (2007). A canonical representation of order 3 phase type distributions, in K. Volter (Ed.), Formal Methods and Stochastic Models for Performance Evaluation, Springer, Berlin/Heidelberg, pp. 48-62.10.1007/978-3-540-75211-0_5
  4. Horváth, G. and Telek, M. (2009). On the canonical representation of phase type distributions, Performance Evaluation 66(8): 396-409.10.1016/j.peva.2008.11.002
  5. Lakatos, L., Szeidl, L. and Telek, M. (2013). Introduction to Queueing Systems with Telecommunication Applications, Springer, New York, NY.10.1007/978-1-4614-5317-8
  6. Neuts, M. (1981). Matrix Geometric Solutions in Stochastic Models, Johns Hopkins University Press, Baltimore, MD.
  7. Telek, M. and Heindl, A. (2002). Matching moments for acyclic discrete and continuous phase-type distributions of second order, International Journal of Simulation Systems, Science & Technology 3(3-4): 47-57.
  8. Telek, M. and Horv´ath, G. (2007). A minimal representation of Markov arrival processes and a moments matching method, Performance Evaluation 64(9-12): 1153-1168 10.1016/j.peva.2007.06.001
DOI: https://doi.org/10.2478/amcs-2014-0034 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 453 - 470
Submitted on: Aug 20, 2013
Published on: Sep 25, 2014
Published by: University of Zielona Góra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2014 András Meszáros, János Papp, Miklós Telek, published by University of Zielona Góra
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.