Have a personal or library account? Click to login

Transient and stationary characteristics of a packet buffer modelled as an MAP/SM/1/b system

Open Access
|Jun 2014

References

  1. References
  2. Abate, J., Choudhury, G. and Whitt, W. (2000). An introduction to numerical transform inversion and its application to probability models, in W. Grassmann (Ed.), Computational Probability, International Series in Operations Research & Management Science, Vol. 24, Springer, New York, NY, pp. 257–323.10.1007/978-1-4757-4828-4_8
  3. Chydziński, A. (2006). Queue size in a BMAP queue with finite buffer, in Y. Koucheryavy, J. Harju and V. Iversen (Eds.), Next Generation Teletraffic and Wired/Wireless Advanced Networking, Lecture Notes in Computer Science, Vol. 4003, Springer, Berlin/Heidelberg, pp. 200–210.10.1007/11759355_20
  4. Chydziński, A.(2007). TimetoreachbuffercapacityinaBMAP queue, Stochastic Models23(2): 195–209.10.1080/15326340701300746
  5. Chydziński, A. (2008). Packet loss process in a queue with Markovian arrivals, 7th International Conference on Networking, ICN 2008, Cancum, Mexico, pp. 524–529.
  6. Chydziński, A. and Chr´ost, Ł. (2011). Analysis of AQM queues with queue size based packet dropping, International Journal of Applied Mathematics and Computer Science21(3): 567–577, DOI: 10.2478/v10006-011-0045-7.10.2478/v10006-011-0045-7
  7. Dainotti, A., Pescape, A., Salvo Rossi, P., Iannello, G., Palmieri, F. and Ventre, G. (2006). Qrp07-2: An HMM approach to internet traffic modeling, IEEE Global Telecommunications Conference, GLOBECOM’06, San Francisco, CA, USA, pp. 1–6.
  8. Dudin, A.N., Klimenok, V.I. and Tsarenkov, G.V. (2002). A single-server queueing system with batch Markov arrivals, semi-Markov service, and finite buffer: Its characteristics, Automation and Remote Control63(8): 1285–1297.10.1023/A:1019831410410
  9. Dudin, A.N., Shaban, A.A. and Klimenok, V.I. (2005). Analysis of a queue in the BMAP/G/1/N system, International Journal of Simulation Systems, Science & Technology6(1–2): 13–22.
  10. Emmert, B., Binzenh¨ofer, A., Schlosser, D. and Weiß, M. (2007). Source traffic characterization for thin client based office applications, in A. Pras and M. van Sinderen (Eds.), Dependable and Adaptable Networks and Services, Lecture Notes in Computer Science, Vol. 4606, Springer, Berlin/Heidelberg, pp. 86–94.10.1007/978-3-540-73530-4_11
  11. Fischer, W. and Meierhellstern, K. (1993). The Markov-modulated Poisson process (MMPP) cookbook, Performance Evaluation18(2): 149–171.10.1016/0166-5316(93)90035-S
  12. Heyman, D. and Lucantoni, D. (2003). Modeling multiple IP traffic streams with rate limits, IEEE/ACM Transactions on Networking11(6): 948–958.10.1109/TNET.2003.820252
  13. Janowski, L. and Owezarski, P. (2010). Assessing the accuracy of using aggregated traffic traces in network engineering, Telecommunication Systems43(3–4): 223–236.10.1007/s11235-009-9210-9
  14. Janssen, J. and Manca, R. (2006). Applied Semi-Markov Processes, Springer, Science+Business Media, New York, NY.
  15. Klemm, A., Klemm, E., Lindemann, C. and Lohmann, M. (2003). Modeling IP traffic using the batch Markovian arrival process, Performance Evaluation54(2): 149–173.10.1016/S0166-5316(03)00067-1
  16. Kobayashi, H. and Ren, Q. (1992). A mathematical-theory for transient analysis of communication networks, IEICE Transactions on CommunicationsE75B(12): 1266–1276.
  17. Lucantoni, D.M. (1991). New results on the single server queue with a batch Markovian arrival process, Communications in Statistics: Stochastic Models7(1): 1–46.10.1080/15326349108807174
  18. Lucantoni, D.M., Choudhury, G.L. and Whitt, W. (1994). The transient BMAP/G/L queue, Communications in Statistics. Stochastic Models10(1): 145–182.
  19. Meyer, C. (2000). Matrix Analysis and Applied Linear Algebra, Miscellaneous Titles in Applied Mathematics Series, Society for Industrial and Applied Mathematics, Philadelphia, PA.
  20. Muscariello, L., Mellia, M., Meo, M., Marsan, M.A. and Cigno, R.L. (2005). Markov models of internet traffic and a new hierarchical MMPP model, Computer Communications28(16): 1835–1851.10.1016/j.comcom.2005.02.012
  21. Neuts, M.F. (1966). The single server queue with poisson input and semi-Markov service times, Journal of Applied Probability3(1): 202–230.10.2307/3212047
  22. Paxson, V. and Floyd, S. (1995). Wide area traffic: The failure of Poisson modeling, IEEE/ACM Transactions on Networking3(3): 226–244.10.1109/90.392383
  23. Rabiner, L. (1989). A tutorial on hidden Markov models and selected applications in speech recognition, Proceedings of the IEEE77(2): 257–286.10.1109/5.18626
  24. Robert, S. and LeBoudec, J. (1996). On a Markov modulated chain exhibiting self-similarities over finite timescale, Performance Evaluation27(8): 159–173.10.1016/S0166-5316(96)90025-5
  25. Rusek, K., Janowski, L. and Papir, Z. (2011). Correct router interface modeling, Proceedings of the 2nd Joint WOSP/SIPEW International Conference on Performance Engineering, ICPE’11, Karlsruhe, Germany, pp. 97–102.
  26. Rusek, K., Papir, Z. and Janowski, L. (2012). MAP/SM/1/b model of a store and forward router interface, 2012 International Symposium on Performance Evaluation of Computer and Telecommunication Systems (SPECTS), Genova, Italy, pp. 1–8.
  27. Salvador, P., Pacheco, A. and Valadas, R. (2004). Modeling IP traffic: Joint characterization of packet arrivals and packet sizes using BMAPs, Computer Networks44(3): 335–352.10.1016/j.comnet.2003.10.004
  28. Schwefel, H.-P., Lipsky, L. and Jobman, M. (2001). On the necessity of transient performance analysis in telecommunication networks, Teletraffic Engineering in the Internet Era: Proceedings of the International Teletraffic Congress, ITC-17, Salvador da Bahia, Brazil, pp. 1087–1099.
  29. Sequeira, L., Fernandez-Navajas, J., Saldana, J. and Casadesus, L. (2012). Empirically characterizing the buffer behaviour of real devices, 2012 International Symposium on Performance Evaluation of Computer and Telecommunication Systems (SPECTS), Genova, Italy, pp. 1–6.
  30. Weisstein, E.W. (2013). Correlation coefficient, From MathWorld—A Wolfram web resource, http://mathworld.wolfram.com/ CorrelationCoefficient.html.
DOI: https://doi.org/10.2478/amcs-2014-0033 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 429 - 442
Submitted on: May 10, 2013
Published on: Jun 26, 2014
Published by: University of Zielona Góra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2014 Krzysztof Rusek, Lucjan Janowski, Zdzisław Papir, published by University of Zielona Góra
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.