Campisi, P., Neri, A., Panci, G. and Scarano, G. (2004). Robust rotation-invariant texture classification using a model based approach, IEEE Transactions on Image Processing13(6): 782–791.10.1109/TIP.2003.82260715648869
Dai, X., Shu, H., Luo, L., Han, G.N. and Coatrieux, J.L. (2010). Reconstruction of tomographic images from limited range projections using discrete Radon transform and Tchebichef moments, Pattern Recognition43(3): 1152–1164.10.1016/j.patcog.2009.07.009
Fujarewicz, K. (2010). Planning identification experiments for cell signaling pathways: An NFκB case study, International Journal of Applied Mathematics and Computer Science20(4): 773–780, DOI: 10.2478/v10006-010-0059-6.10.2478/v10006-010-0059-6
Iliev, P. and Xu, Y. (2007). Discrete orthogonal polynomials and difference equations of several variables, Advances in Mathematics212(1): 1–36.10.1016/j.aim.2006.09.012
Ismail, M., Foncannon, J. and Pekonen, O. (2008). Classical and quantum orthogonal polynomials in one variable, The Mathematical Intelligencer30(1): 54–60.10.1007/BF02985757
Mukundan, R., Ong, S. and Lee, P.A. (2001). Image analysis by Tchebichef moments, IEEE Transactions on Image Processing10(9): 1357–1364.10.1109/83.94185918255550
Papakostas, G., Karakasis, E. and Koulouriotis, D. (2010). Novel moment invariants for improved classification performance in computer vision applications, Pattern Recognition43(1): 58–68.10.1016/j.patcog.2009.05.008
See, K., Loke, K., Lee, P. and Loe, K. (2007). Image reconstruction using various discrete orthogonal polynomials in comparison with DCT, Applied Mathematics and Computation193(2): 346–359.10.1016/j.amc.2007.03.080
Sroubek, F., Cristóbal, G. and Flusser, J. (2007). A unified approach to superresolution and multichannel blind deconvolution, IEEE Transactions on Image Processing16(9): 2322–2332.10.1109/TIP.2007.90325617784605
Teague, M.R. (1980). Image analysis via the general theory of moments, Journal of the Optical Society of America A70(8): 920–930.10.1364/JOSA.70.000920
Wang, J.Z., Wiederhold, G., Firschein, O. and Wei, S.X. (1997). Wavelet-based image indexing techniques with partial sketch retrieval capability, Proceedings of the IEEE International Forum on Research and Technology Advances in Digital Libraries, ADL 1997, Washington, DC, USA, pp. 13–24.
Wang, Z. and Bovik, A.C. (2009). Mean squared error: Love it or leave it? A new look at signal fidelity measures, IEEE Signal Processing Magazine26(1): 98–117.10.1109/MSP.2008.930649
Hunek, W.P and Latawiec, K.J. (2011). A study on new right/left inverses of nonsquare polynomial matrices, International Journal of Applied Mathematics and Computer Science21(2): 331–348, DOI: 10.2478/v10006-011-0025-y.10.2478/v10006-011-0025-y
Xu, Y. (2005). Second-order difference equations and discrete orthogonal polynomials of two variables, International Mathematics Research Notices2005(8): 449–475.
Yap, P.T., Paramesran, R. and Ong, S.H. (2003). Image analysis by Krawtchouk moments, IEEE Transactions on Image Processing12(11): 1367–1377.10.1109/TIP.2003.81801918244694
Yap, P. T., Paramesran, R. and Ong, S. H. (2007). Image analysis using Hahn moments, IEEE Transactions on Pattern Analysis and Machine Intelligence29(11): 2057–2062.10.1109/TPAMI.2007.7070917848784
Zhang, D. and Lu, G. (2001). Content-based shape retrieval using different shape descriptors: A comparative study, Proceedings of the International Conference on Intelligent Multimedia and Distance Education, ICIMADE01, Fargo, ND, USA, pp. 1–9.
Zhou, J., Shu, H., Zhu, H., Toumoulin, C. and Luo, L. (2005). Image analysis by discrete orthogonal Hahn moments, in J.S. Marques, N. P´erez de la Blanca and P. Pina (Eds.), Image Analysis and Recognition, Springer, Berlin/Heidelberg, pp. 524–531.10.1007/11559573_65
Zhu, H., Liu, M., Li, Y., Shu, H. and Zhang, H. (2011). Image description with nonseparable two-dimensional Charlier and Meixner moments, International Journal of Pattern Recognition and Artificial Intelligence25(1): 37–55.10.1142/S0218001411008506
Zhu, H., Liu, M., Shu, H., Zhang, H. and Luo, L. (2010). General form for obtaining discrete orthogonal moments, IET Image Processing4(5): 335–352.10.1049/iet-ipr.2009.0195
Zunić, J., Hirota, K. and Rosin, P.L. (2010). A Hu moment invariant as a shape circularity measure, Pattern Recognition43(1): 47–57.10.1016/j.patcog.2009.06.017