Have a personal or library account? Click to login

Local analysis of hybrid systems on polyhedral sets with state-dependent switching

Open Access
|Jun 2014

References

  1. Ames, A. and Sastry, S. (2005). A homology theory for hybrid systems: Hybrid homology, in M. Morari and L. Thiele (Eds.), Hybrid Systems: Computation and Control, Lecture Notes in Computer Science, Vol. 3414, Springer-Verlag, Berlin/Heidelberg, pp. 86–102.10.1007/978-3-540-31954-2_6
  2. Balluchi, A., Benvenuti, L. and Sangiovanni-Vincentelli, A. (2005). Hybrid systems in automotive electronics design, 44th IEEE Conference on Decision and Control & 2005/2005 European Control Conference, CDC-ECC ’05, Seville, Spain, pp. 5618–5623.
  3. Blanchini, F. and Miani, S. (2008). Set-theoretic Methods in Control, Systems & Control: Foundations & Applications, Birkh¨auser, Boston, MA.10.1007/978-0-8176-4606-6
  4. Bredon, G.E. (1993). Topology and Geometry, Graduate Texts in Mathematics, Vol. 139, Springer-Verlag, New York, NY.
  5. Bujorianu, M.L. and Lygeros, J. (2006). Toward a general theory of stochastic hybrid systems, in H. Bloom and J. Lygeros (Eds.), Stochastic Hybrid Systems, Lecture Notes in Control and Information Sciences, Vol. 337, Springer, Berlin, pp. 3–30.10.1007/11587392_1
  6. Ding, J., Gillulay, J.H., Huang, H., Vitus, M.P., Zhang, W. and Tomlin, C. (2011). Hybrid systems in robotics, IEEE Robotics & Automation Magazine 18(3): 33–43.10.1109/MRA.2011.942113
  7. Goebel, R., Sanfelice, R.G. and Teel, A.R. (2009). Hybrid dynamical systems: Robust stability and control for systems that combine continuous-time and discrete-time dynamics, IEEE Control Systems Magazine 29(2): 28–93.10.1109/MCS.2008.931718
  8. Goebel, R. and Teel, A. R. (2006). Solutions to hybrid inclusions via set and graphical convergence with stability theory applications, Automatica 42(4): 573–587.10.1016/j.automatica.2005.12.019
  9. Gr¨unbaum, B. (2003). Convex Polytopes, 2nd Edn., Graduate Texts in Mathematics, Vol. 221, Springer-Verlag, New York, NY.
  10. Habets, L.C.G.J.M. and van Schuppen J.H. (2005). Control to facet problems for affine systems on simplices and polytopes—with applications to control of hybrid systems, Proceedings of the 44th IEEE Conference on Decision and Control, Seville, Spain, pp. 4175–4180.
  11. Haddad, W.M., Chellaboina, V. and Nersesov, S.G. (2006). Impulsive and Hybrid Dynamical Systems, Princeton Series in Applied Mathematics, Princeton University Press, Princeton, NJ.10.1515/9781400865246
  12. Heemels, W.P.M.H., De Schutter, B. and Bemporad, A. (2001). Equivalence of hybrid dynamical models, Automatica 37(7): 1085–1091.10.1016/S0005-1098(01)00059-0
  13. Hudson, J.F.P. (1969). Piecewise Linear Topology, University of Chicago Lecture Notes, W.A. Benjamin, Inc., New York, NY/Amsterdam.
  14. Johansson, M. and Rantzer, A. (1998). Computation of piecewise quadratic Lyapunov functions for hybrid systems, IEEE Transactions on Automatic Control 43(4): 555–559.10.1109/9.664157
  15. Kunze, M. (2000). Non-smooth Dynamical Systems, Lecture Notes in Mathematics, Vol. 1744, Springer-Verlag, Berlin.
  16. Lang, S. (1999). Fundamentals of Differential Geometry, Graduate Texts in Mathematics, Vol. 191, Springer-Verlag, New York, NY.
  17. Leine, R.I. and Nijmeijer, H. (2004). Dynamics and Bifurcations of Non-smooth Mechanical Systems, Lecture Notes in Applied and Computational Mechanics, Vol. 18, Springer-Verlag, Berlin.
  18. Leth, J. and Wisniewski, R. (2012). On formalism and stability of switched systems, Journal of Control Theory and Applications10(2): 176–183.10.1007/s11768-012-0138-3
  19. Liberzon, D. (2003). Switching in Systems and Control, Systems & Control: Foundations & Applications, Birkh¨auser, Boston, MA.10.1007/978-1-4612-0017-8
  20. Lygeros, J., Johansson, K.H., Simi´c, S.N., Zhang, J. and Sastry, S.S. (2003). Dynamical properties of hybrid automata, IEEE Transactions on Automatic Control48(1): 2–17.10.1109/TAC.2002.806650
  21. Munkres, J.R. (1975). Topology: A First Course, Prentice-Hall, Englewood Cliffs, NJ.
  22. Pettersson, S. and Lennartson, B. (2002). Hybrid system stability and robustness verification using linear matrix inequalities, International Journal of Control75(16): 1335–1355.10.1080/0020717021000023762
  23. Rantzer, A. and Johansson, M. (2000). Piecewise linear quadratic optimal control, IEEE Transactions on Automatic Control45(4): 629–637.10.1109/9.847100
  24. Rienm¨uller, T., Hofbaur, M., Trav´e-Massuyès, L. and Bayoudh, M. (2013). Mode set focused hybrid estimation, International Journal of Applied Mathematics and Computer Science23(1): 131–144, DOI: 10.2478/amcs-2013-0011.10.2478/amcs-2013-0011
  25. Simi´c, S.N., Johansson, K.H., Lygeros, J. and Sastry, S. (2005). Towards a geometric theory of hybrid systems, Dynamics of Continuous, Discrete & Impulsive Systems B: Applications & Algorithms12(5–6): 649–687.
  26. Sontag, E.D. (1981). Nonlinear regulation: The piecewise linear approach, IEEE Transactions on Automatic Control26(2): 346–358.10.1109/TAC.1981.1102596
  27. Tabuada, P. (2009). Verification and Control of Hybrid Systems, Springer, New York, NY.10.1007/978-1-4419-0224-5
  28. Tomlin, C., Pappas, G.J. and Sastry, S. (1998). Conflict resolution for air traffic management: A study in multiagent hybrid systems, IEEE Transactions on Automatic Control43(4): 509–521.10.1109/9.664154
  29. van der Schaft, A. and Schumacher, H. (2000). An Introduction to Hybrid Dynamical Systems, Lecture Notes in Control and Information Sciences, Vol. 251, Springer-Verlag, London.
  30. Wisniewski, R. (2006). Towards modelling of hybrid systems, 45th IEEE Conference on Decision and Control, San Diego, CA, USA, pp. 911–916.
  31. Wisniewski, R. and Leth, J. (2011). Convenient model for systems with hystereses-control, Proceedings of the 50th IEEE Conference on Decision and Control, Orlando, FL, USA.10.1109/CDC.2011.6161090
  32. Yang, H., Jiang, B., Cocquempot, V. and Chen, M. (2013). Spacecraft formation stabilization and fault tolerance: A state-varying switched system approach, System & Control Letters62(9): 715–722.10.1016/j.sysconle.2013.05.007
  33. Yang, H., Jiang, B., Cocquempot, V. and Zang, H. (2011). Stabilization of switched nonlinear systems with all unstable modes: Application to multi-agent systems, IEEE Transactions on Automatic Control56(9): 2230–2235.10.1109/TAC.2011.2157413
  34. Yordanov, B., T˚umov´Cern´a, J., ˇa, I., Barnat, J. and Belta, C. (2012). Temporal logic control of discrete-time piecewise affine systems, IEEE Transactions on Automatic Control57(6): 1491–1504.10.1109/TAC.2011.2178328
DOI: https://doi.org/10.2478/amcs-2014-0026 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 341 - 355
Submitted on: Apr 10, 2013
Published on: Jun 26, 2014
Published by: University of Zielona Góra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2014 John Leth, Rafael Wisniewski, published by University of Zielona Góra
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.