Busłowicz, M. (2008). Stability of linear continuous time fractional order systems with delays of the retarded type, Bulletin of the Polish Academy of Sciences: Technical Sciences56(4): 319–324.
Dzieliński, A., Sierociuk, D. and Sarwas, G. (2009). Ultracapacitor parameters identification based on fractional order model, Proceedings of ECC’09, Budapest, Hungary.10.23919/ECC.2009.7074403
Dzieliński, A. and Sierociuk, D. (2008). Stability of discrete fractional order state-space systems, Journal of Vibrations and Control14(9/10): 1543–1556.10.1177/1077546307087431
Kaczorek, T. (2008a). Fractional positive continuous-time systems and their reachability, International Journal of Applied Mathematics and Computer Science18(2): 223–228, DOI: 10.2478/v10006-008-0020-0.10.2478/v10006-008-0020-0
Kaczorek, T. (2008b). Practical stability of positive fractional discrete-time linear systems, Bulletin of the Polish Academy of Sciences: Technical Sciences56(4): 313–317.10.2478/v10175-010-0143-y
Kaczorek, T. (2008c). Reachability and controllability to zero tests for standard and positive fractional discrete-time systems, Journal Européen des Systémes Automatisés42(6–8): 769–787.10.3166/jesa.42.769-787
Kaczorek, T. (2009). Asymptotic stability of positive fractional 2D linear systems, Bulletin of the Polish Academy of Sciences: Technical Sciences57(3): 289–292.10.2478/v10175-010-0131-2
Kaczorek, T. (2011c). Positive linear systems consisting of n subsystems with different fractional orders, IEEE Transactions Circuits and Systems58(6): 1203–1210.10.1109/TCSI.2010.2096111
Kaczorek, T. (2011d). Checking of the positivity of descriptor linear systems by the use of the shuffle algorithm, Archive of Control Sciences21(3): 287–298.10.2478/v10170-010-0044-1
Kaczorek, T. (2013a). Minimum energy control of fractional positive continuous-time linear systems, MMAR 2013, Międzyzdroje, Poland.10.1109/MMAR.2013.6669982
Kaczorek, T. (2013c). Minimum energy control of positive discrete-time linear systems with bounded inputs, Archives of Control Sciences23(2): 205–211.10.2478/acsc-2013-0012
Kaczorek, T. (2013d). Minimum energy control of positive continuous-time linear systems with bounded inputs, International Journal of Applied Mathematics and Computer Science23(4): 725–730, DOI: 10.2478/amcs-2013-0054.10.2478/amcs-2013-0054
Kaczorek, T. (2014b). An extension of Klamka’s method of minimum energy control to fractional positive discrete-time linear systems with bounded inputs, Bulletin of the Polish Academy of Sciences: Technical Sciences62(2), (in press).10.2478/bpasts-2014-0022
Kaczorek, T. and Klamka, J. (1986). Minimum energy control of 2D linear systems with variable coefficients, International Journal of Control44(3): 645–650.10.1080/00207178608933623
Klamka, J. (1976a). Relative controllability and minimum energy control of linear systems with distributed delays in control, IEEE Transactions on Automatic Control21(4): 594–595.10.1109/TAC.1976.1101280
Klamka, J. (1976b). Relative controllability and minimum energy control of linear systems with distributed delays in control, IEEE Transactions on Automatic Control21(4): 594–595.10.1109/TAC.1976.1101280
Klamka, J. (1977). Minimum energy control of discrete systems with delays in control, International Journal of Control26(5): 737–744.10.1080/00207177708922289
Klamka, J. (2010). Controllability and minimum energy control problem of fractional discrete-time systems, in D. Baleanu, Z.B. Guvenc and J.A. Tenreiro Machado (Eds.), New Trends Nanotechology and Fractional Calculus, Springer-Verlag, New York, NY, pp. 503–509.10.1007/978-90-481-3293-5_45
Ostalczyk, P. (2008). Epitome of the Fractional Calculus: Theory and Its Applications in Automatics, Technical University of Łódź Press, Łódź, (in Polish).
Radwan, A.G., Soliman, A.M., Elwakil, A.S. and Sedeek, A. (2009). On the stability of linear systems with fractional-order elements, Chaos, Solitons and Fractals40(5): 2317–2328.10.1016/j.chaos.2007.10.033
Solteiro Pires, E.J., Tenreiro Machado, J.A. and Moura Oliveira, P.B. (2006). Fractional dynamics in genetic algorithms, Workshop on Fractional Differentiation and Its Application, Porto, Portugal, Vol. 2, pp. 414–419.