Have a personal or library account? Click to login

Disturbance modeling and state estimation for offset-free predictive control with state-space process models

Open Access
|Jun 2014

References

  1. Anderson, D. and Moore, J. (2005). Optimal Filtering, Dover Publications Inc, New York, NY.
  2. Astrom, K. and Wittenmark, B. (1997). Computer Controlled Systems, Prentice Hall, Upper Saddle River, NJ.
  3. Blevins, T.L., McMillan, G.K., Wojsznis, W.K. and Brown, M.W. (2003). Advanced Control Unleashed, The ISA Society, Research Triangle Park, NC.
  4. Blevins, T.L., Wojsznis, W.K. and Nixon, M. (2013). Advanced Control Foundation, The ISA Society, Research Triangle Park, NC.
  5. Camacho, E. and Bordons, C. (1999). Model Predictive Control, Springer Verlag, London.10.1007/978-1-4471-3398-8
  6. Doyle III, F., Ogunnaike, B. and Pearson, R. (1996). Nonlinear model predictive control of a simulated multivariable polymerization reactor using second-order Volterra models, Automatica 32(9): 1285–1301.10.1016/0005-1098(96)00086-6
  7. Gonzalez, A.H., Adam, E.J. and Marchetti, J.L. (2008). Conditions for offset elimination in state space receding horizon controllers: A tutorial analysis, Chemical Engineering and Processing 47(12): 2184–2194.10.1016/j.cep.2007.11.011
  8. Hesketh, T. (1982). State-space pole-placing self-tuning regulator using input-output values, IEE Proceedings, Part D 129(4): 123–128.10.1049/ip-d.1982.0025
  9. Ławry´nczuk, M. (2009). Efficient nonlinear predictive control based on structured neural models, International Journal of Applied Mathematics and Computer Science 19(2): 233–246, DOI: 10.2478/v10006-009-0019-1.10.2478/v10006-009-0019-1
  10. Ławry´nczuk, M. and Tatjewski, P. (2010). Nonlinear predictive control based on neural multi-models, International Journal of Applied Mathematics and Computer Science 20(1): 7–21, DOI: 10.2478/v10006-010-0001-y.10.2478/v10006-010-0001-y
  11. Maciejowski, J. (2002). Predictive Control, Prentice Hall, Harlow.
  12. Maeder, U. and Morari, M. (2010). Offset-free reference tracking with model predictive control, Automatica 46(9): 1469–1476.10.1016/j.automatica.2010.05.023
  13. Morari, M. and Maeder, U. (2012). Nonlinear offset-free model predictive control, Automatica 48(9): 2059–2067.10.1016/j.automatica.2012.06.038
  14. Muske, K. and Badgwell, T. (2002). Disturbance modeling for offset-free linear model predictive control, Journal of Process Control 12(5): 617–632.10.1016/S0959-1524(01)00051-8
  15. Pannocchia, G. and Bemporad, A. (2007). Combined design of disturbance model and observer for offset-free model predictive control, IEEE Transactions on Automatic Control 52(6): 1048–1053.10.1109/TAC.2007.899096
  16. Pannocchia, G. and Rawlings, J. (2003). Disturbance models for offset-free model predictive control, AIChE Journal 49(2): 426–437.10.1002/aic.690490213
  17. Prett, D. and Garcia, C. (1988). Fundamental Process Control, Butterworths, Boston, MA.
  18. Qin, S. and Badgwell, T. (2003). A survey of industrial model predictive control technology, Control Engineering Practice 11(7): 733–764.10.1016/S0967-0661(02)00186-7
  19. Rao, V. and Rawlings, J.B. (2009). Model Predictive Control: Theory and Design, Nob Hill Publishing, Madison, WI.
  20. Rossiter, J. (2003). Model-Based Predictive Control, CRC Press, Boca Raton, FL.
  21. Tatjewski, P. (2007). Advanced Control of Industrial Processes, Springer Verlag, London.
  22. Tatjewski, P. (2008). Advanced control and on-line process optimization in multilayer structures, Annual Reviews in Control 32(1): 71–85.10.1016/j.arcontrol.2008.03.003
  23. Tatjewski, P. (2010). Supervisory predictive control and on-line set-point optimization, International Journal of Applied Mathematics and Computer Science 20(3): 483–495, DOI: 10.2478/v10006-010-0035-1.10.2478/v10006-010-0035-1
  24. Tatjewski, P. (2011). Disturbance modeling and state estimation for predictive control with different state-space process models, Preprints of the 18th IFAC World Congress, Milan, Italy, pp. 5326–5331.
  25. Tatjewski, P. (2012). Modeling deterministic disturbances and state filtering in model predictive control with state-space models, in M. Busłowicz and K. Malinowski (Eds.), Advances in Control Theory and Automation, OWPB, Białystok, pp. 263–274.
  26. Tatjewski, P. and Ławry´nczuk, M. (2006). Soft computing in model-based predictive control, International Journal of Applied Mathematics and Computer Science 16(1): 7–26.
  27. Wang, L. (2009). Model Predictive Control System Design and Implementation Using MATLAB, Springer Verlag, London.
DOI: https://doi.org/10.2478/amcs-2014-0023 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 313 - 323
Submitted on: Sep 27, 2013
Published on: Jun 26, 2014
Published by: University of Zielona Góra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2014 Piotr Tatjewski, published by University of Zielona Góra
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.