Have a personal or library account? Click to login
Open Access
|Jun 2014

References

  1. Aminian, F. and Aminian, M. (2001). Fault diagnosis of analog circuits using Bayesian neural networks with wavelet transform as preprocessor, Journal of Electronic Testing17(1): 29–36.
  2. Anand, G. (2012). Application of artificial neural networks in electrical machines: An overview, World Academy of Science, Engineering and Technology6(6): 384–385.
  3. Ben Hamida, N. and Kaminska, B. (1993). Multiple fault analog circuit testing by sensitivity analysis, Journal of Electronic Testing4(4): 331–343.10.1007/BF00972158
  4. Betta, G. and Pietrosanto, A. (2000). Instrument fault detection and isolation: State of the art and new research trends, IEEE Transactions on Instrumentation and Measurement49(1): 100–107.10.1109/19.836318
  5. Bilski, P. and Wojciechowski, J. (2007). Automated diagnostics of analog systems using fuzzy logic approach, IEEE Transactions on Instrumentation Measurement56(6): 2175–2185.10.1109/TIM.2007.908152
  6. Bilski, P. and Wojciechowski, J. (2011). Rough-sets-based reduction for analog systems diagnostics, IEEE Transactions on Instrumentation and Measurement60(3): 880–890.10.1109/TIM.2010.2060225
  7. Bilski, P. (2013). Application of clustering methods for the ambiguity groups detection in the diagnostic of analog systems, Przegla˛d Elektrotechniczny89(2a): 276–278.
  8. Bilski, P. and Wojciechowski, J. (2012). Current research trends in diagnostics of analog systems, Proceedings of the International Conference on Signals and Electronic Systems, Wrocław, Poland, DOI: 10.1109/TIM.2010.2060225.10.1109/TIM.2010.2060225
  9. Browning, T.R. (2001). Applying the design structure matrix to system decomposition and integration problems: A review and new directions, IEEE Transactions on Engineering Management48(3): 292–306.10.1109/17.946528
  10. Czaja, Z. and Zielonko, R. (2003). Fault diagnosis in electronic circuits based on bilinear transformation in 3D and 4D spaces, IEEE Transactions on Instrumentation and Measurement52(1): 97–102.10.1109/TIM.2003.809075
  11. Karki, J. (2002). Active low-pass filter design, Texas Instruments, http://www.ti.com/lit/an/sloa049b/sloa049b.pdf.
  12. Maiden, Y., Jervis Barrie, W., Fouillat, P. and Lesage, S. (1999). Using artificial neural networks or Lagrange interpolation to characterize the faults in an analog circuit: An experimental study, IEEE Transactions on Instrumentation and Measurement48(5): 932–938.10.1109/19.799650
  13. Nowicki, A., Grochowski, M. and Duzinkiewicz, K. (2012). Data-driven models for fault detection using kernel PCA: A water distribution system case study, International Journal of Applied Mathematics and Computer Science22(4): 939–949, DOI: 10.2478/v10006-012-0070-1.10.2478/v10006-012-0070-1
  14. Patan, K., Witczak, M. and Korbicz, J. (2008). Towards robustness in neural network based fault diagnosis, International Journal of Applied Mathematics and Computer Science18(4): 443–454, DOI: 10.2478/v10006-008-0039-2.10.2478/v10006-008-0039-2
  15. Pöyhönen, S., Negrea, M., Arkkio, A., Hyötyniemi, H. and Koivo, H. (2002). Fault diagnostics of an electrical machine with multiple support vector classifiers, Proceedings of the 17th IEEE International Symposium on Intelligent Control, Vancouver, British Columbia, Canada, Vol. 1, pp. 373–378.
  16. Rutkowski, J. and Grzechca, D. (2001). Analog fault dictionary—fuzzy set approach, Proceedings of the European Conference on Circuit Theory and Design, Helsinki, Finland, pp. 253–256.
  17. Rutkowski, J. and Zieliński, L. (2003). Using evolutionary techniques for chosen optimization problems related to analog circuits design, Proceedings of the 16th European Conference on Circuits Theory and Design, Cracow, Poland, Vol. 3, pp. III-313–316.
  18. Sałat, R. and Osowski, S. (2011). Support vector machine for soft fault location in electrical circuits, Journal of Intelligent and Fuzzy Systems22(1): 21–31.10.3233/IFS-2010-0471
  19. Samanta, B. and Nataraj, C. (2009). Use of particle swarm optimization for machinery fault detection, Engineering Applications of Artificial Intelligence22(2): 308–316.10.1016/j.engappai.2008.07.006
  20. Simani, S. (2013). Residual generator fuzzy identification for automotive diesel engine fault diagnosis, International Journal of Applied Mathematics and Computer Science23(2): 419–438, DOI: 10.2478/amcs-2013-0032.10.2478/amcs-2013-0032
  21. Smyth, P. (1994). Hidden Markov models for fault detection in dynamic systems, Pattern Recognition27(1): 149–164.10.1016/0031-3203(94)90024-8
  22. Starzyk, J.A., Pang, J., Manetti, S., Piccirilli, M.C. and Fedi, G. (2000). Finding ambiguity groups in low testability analog circuits, IEEE Transactions on Circuits and Systems47(8): 1125–1137.10.1109/81.873868
  23. Starzyk, J., Liu, D., Liu, Z., Nelson, D. and Rutkowski, J. (2004). Entropy-based optimum test points selection for analog fault dictionary techniques, IEEE Transactions on Instrumentation and Measurement53(3): 754–761.10.1109/TIM.2004.827085
  24. Svensson, M., Byttner, S. and Rognvaldsson, T. (2008). Self-organizing maps for automatic fault detection in a vehicle cooling system, Proceedings of the 4th International IEEE Conference on Intelligent Systems, Varna, Bulgaria, Vol. 3, pp. 8–12.
  25. Tadeusiewicz, M. and Hałgas, S. (2007). Finding operating points of the diode-transistor circuits via homotopy approach, Przegląd Elektrotechniczny83(2): 69–72.
  26. Tadeusiewicz, M., Hałgas, S. and Korzybski, M. (2011). Multiple catastrophic fault diagnosis of analog circuits considering the component tolerances, International Journal on Circuits Theory and Applications40(10): 1041–1052, DOI: 10.1002/cta.770.10.1002/cta.770
  27. Tudoroiu, N. and Zaheeruddin, M. (2005). Fault detection and diagnosis of valve actuators in HVAC systems, Proceedings of the 2005 IEEE Conference on Control Applications, Toronto, Canada, pp. 1281–1286.
  28. Wang, K., Chiasson, J., Bodson, M. and Tolbert, L.M. (2007). An online rotor time constant estimator for the induction machine, IEEE Transactions on Control Systems Technology15(2): 339–348.10.1109/TCST.2006.886445
  29. Wu, S. and Chow, T.W.S. (2004). Induction machine fault detection using SOM-based RBF neural networks, IEEE Transactions on Industrial Electronics51(1): 183–194.10.1109/TIE.2003.821897
  30. Xue, H. and Jiang, J.G. (2006). Fault detection and accommodation for nonlinear systems using fuzzy neural networks, Proceedings of the 5th International Power Electronics and Motion Control Conference, Shanghai, China, pp. 1–5, DOI: 10.1109/IPEMC.2006.4778342.10.1109/IPEMC.2006.4778342
  31. Zhu, L., Zhu, Y., Mao, H. and Gu, M. (2009). A new method for sparse signal denoising based on compressed sensing, 2nd International Symposium on Knowledge Acquisition and Modeling, Wuhan, China, pp. 35–38.
DOI: https://doi.org/10.2478/amcs-2014-0020 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 271 - 282
Submitted on: Jan 21, 2013
Published on: Jun 26, 2014
Published by: University of Zielona Góra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2014 Piotr Bilski, Jacek Wojciechowski, published by University of Zielona Góra
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.