Have a personal or library account? Click to login

Automatic speech signal segmentation based on the innovation adaptive filter

Open Access
|Jun 2014

References

  1. Almpanidis, G. and Kotropoulos, C. (2007). Phonetic segmentation using the generalized Gamma distribution and small sample Bayesian information criterion, Speech Communication50(1): 38–55.10.1016/j.specom.2007.06.005
  2. Almpanidis, G., Kotti, M. and Kotropoulos, C. (2009). Robust detection of phone boundaries using model selection criteria with few observations, IEEE Transactions on Audio, Speech, and Signal Processing17(2): 287–298.10.1109/TASL.2008.2009162
  3. Barkat, M. (1991). Signal Detection and Estimation, Artech House, Boston, MA.
  4. Brandt, A.V. (1983). Detecting and estimating the parameters jumps using ladder algorithms and likelihood ratio test, Proceedings of the International Conference on Acoustics, Speech, and Signal Processing, Boston, MA, USA, pp. 1017–1020.
  5. Brugnara, F., Falavinga, D. and Omolongo, M. (1993). Automatic segmentation and labeling of speech based on hidden Markov models, Speech Communication12(4): 357–370.10.1016/0167-6393(93)90083-W
  6. Delacourt, P. and Wellekens, C.J. (2000). DISTBIC: A speaker-based segmentation for audio data indexing, Speech Communication32(1–2): 111–126.10.1016/S0167-6393(00)00027-3
  7. Gomez, J.A. and Calvo, M. (2011). Improvements on automatic speech segmentation at the phonetic level, in C. San Martin and S.-W. Kim (Eds.), CIARP 2011, Lecture Notes in Computer Science, Vol. 7042, Springer-Verlag, Berlin/Heidelberg, pp. 557–564.10.1007/978-3-642-25085-9_66
  8. Haykin, S. (1996). Adaptive Filter Theory, Prentice-Hall, Englewood Cliffs, NJ.
  9. Jamouli, H., Al Hail, M.A. and Sauter, D. (2012). A mixed active and passive GLR test for a fault tolerant control system, International Journal of Applied Mathematics and Computer Science22(1): 9–23, DOI: 10.2478/v10006-012-0001-1.10.2478/v10006-012-0001-1
  10. Kay, S.M. (1988). Modern Spectral Estimation, Prentice-Hall, Englewood Cliffs, NJ.
  11. Kay, S.M. (1998). Fundamentals of Statistical Signal Processing, Vol. II: Detection Theory, Prentice-Hall, Englewood Clifft, NJ.
  12. Kroon, P. and Deprettere, E.F. (1988). A class of analysis-by-synthesis predictive coders for high quality speech coding at rates between 4.8 and 16 kbits/s, IEEE Journal on Selected Areas in Communications6(2): 353–363.
  13. Lee, D.T.L., Morf, M. and Friedlander, B. (1981). Recursive least squares ladder estimation algorithms, IEEE Transactions on Circuits and Systems28(6): 627–641.10.1109/TASSP.1981.1163587
  14. Lopatka, M., Adam, O., Laplanche, C., Zarzycki, J. and Motsch, J-F. (2005). Effective analysis of non-stationary short-time signals based on the adaptive Schur filter, IEEE/SP 13th Workshop on Statistical Signal Processing, Bordeaux, France, pp. 251–256.
  15. Lopatka, M., Adam, O., Laplanche, C., Motsch, J-F. and Zarzycki, J. (2006). Sperm whale click analysis using a recursive time-variant lattice filter, Applied Acoustics67(11–12): 1118–1133.10.1016/j.apacoust.2006.05.011
  16. Makowski, R. and Zimroz, R. (2013). A procedure for weighted summation of the derivatives of reflection coefficients in adaptive Schur filter with application to fault detection in rolling element bearings, Mechanical Systems and Signal Processing38(1): 65–77.10.1016/j.ymssp.2012.05.005
  17. Mporas, I., Ganchev, T. and Fakotakis, N. (2008). Phonetic segmentation using multiple speech features, International Journal of Speech Technology11(1): 73–85.10.1007/s10772-009-9038-4
  18. Park, S.S. and Kim, N.S. (2007). On using multiple models for automatic speech segmentation, IEEE Transactions on Audio, Speech, and Language Processing15(8): 2202–2212.10.1109/TASL.2007.903933
  19. Prasad, V.K., Nagarajan, T. and Murthy, H.A. (2004). Automatic segmentation of continuous speech using minimum phase delay functions, Speech Communication42(3–4): 429–446.10.1016/j.specom.2003.12.002
  20. Puig, V. (2010). Fault diagnosis and fault tolerant control using set-membership approaches: Application to real case studies, International Journal of Applied Mathematics and Computer Science20(4): 619–635, DOI: 10.2478/v10006-010-0046-y.10.2478/v10006-010-0046-y
  21. Rabiner, L. and Gold, B. (1975). Theory and Application of Digital Signal Processing, Prentice-Hall, Englewood Cliffs, NJ.
  22. Rabiner, L. and Juang, B-H. (1993). Fundamentals of Speech Recognition, Prentice-Hall, Englewood Cliffs, NJ.
  23. Rudoy, D., Quatieri, T.F. and Wolfe, P.J. (2011). Time-varying autoregressions in speech: Detection theory and applications, IEEE Transaction on Audio, Speech, and Language Processing19(4): 977–989.10.1109/TASL.2010.2073704
  24. Scharenborg, O., Wan, V. and Ernestus, M. (2010). Unsupervised speech segmentation: An analysis of the hypothesized phone boundaries, Journal of Acoustical Society of America127(2): 1084–1095.10.1121/1.327719420136229
  25. Schwarz, P., Matejka, P. and Cernocky, J. (2006). Hierarchical structures of neural networks for phoneme recognition, IEEE International Conference on Acoustics, Speech, and Signal Processing, Toulouse, France, Vol. 1, pp. 325–328.
  26. Sharma, M. and Mammone, R. (1996). Blind speech segmentation: Automatic segmentation of speech without linguistic knowledge, Proceedings of the International Conference on Spoken Language Processing, Philadelphia, PA, USA, pp. 1237–1240.
  27. Toledano, D.T., Hernandez Gomez, L.A. and Villarrubia Grande, L. (2003) Automatic phonetic segmentation, IEEE Transactions on Speech and Audio Processing11(6): 617–625.10.1109/TSA.2003.813579
  28. Tyagi, V., Bourlard, H. and Wellekens, C. (2006). On variable-scale piecewise stationary analysis of speech signals for ASR, Speech Communication48(9): 1182–1191.10.1016/j.specom.2006.04.002
DOI: https://doi.org/10.2478/amcs-2014-0019 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 259 - 270
Submitted on: Jan 21, 2013
Published on: Jun 26, 2014
Published by: University of Zielona Góra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2014 Ryszard Makowski, Robert Hossa, published by University of Zielona Góra
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.