Have a personal or library account? Click to login

Regularized nonnegative matrix factorization: Geometrical interpretation and application to spectral unmixing

Open Access
|Jun 2014

References

  1. Benthem, M.H.V. and Keenan, M.R. (2004). Fast algorithm for the solution of large-scale non-negativity-constrained least squares problems, Journal of Chemometrics18(10): 441– 450.10.1002/cem.889
  2. Berry, M., Browne, M., Langville, A.N., Pauca, P. and Plemmons, R.J. (2007). Algorithms and applications for approximate nonnegative matrix factorization, Computational Statistics and Data Analysis52(1): 155–173.10.1016/j.csda.2006.11.006
  3. Bioucas-Dias, J.M. (2009). A variable splitting augmented Lagrangian approach to linear spectral unmixing, Proceedings of the 1st IEEE GRSS Workshop on Hyperspectral Image and Signal Processing, WHISPERS, Grenoble, France.10.1109/WHISPERS.2009.5289072
  4. Bioucas-Dias, J.M. and Figueiredo, M. (2010). Alternating direction algorithms for constrained sparse regression: Application to hyperspectral unmixing, Proceedings of the 2nd IEEE GRSS Workshop on Hyperspectral Image and Signal Processing, WHISPERS, Raykjavik, Iceland.10.1109/WHISPERS.2010.5594963
  5. Bioucas-Dias, J.M., Plaza, A., Dobigeon, N., Parente, M., Du, Q., Gader, P. and Chanussot, J. (2012). Hyperspectral unmixing overview: Geometrical, statistical, and sparse regression-based approaches, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing5(2): 354–379.10.1109/JSTARS.2012.2194696
  6. Bro, R. and Jong, S.D. (1997). A fast non-negativityconstrained least squares algorithm, Journal of Chemometrics11(5): 393–401.10.1002/(SICI)1099-128X(199709/10)11:5<;393::AID-CEM483>3.0.CO;2-L
  7. Calvetti, D., Lewis, B. and Reichel, L. (2001). On the choice of subspace for iterative methods for linear discrete ill-posed problems, International Journal of Applied Mathematics and Computer Science11(5): 1069–1092.
  8. Chan, T.-H., Ma, W.-K., Ambikapathi, A.-M. and Chi, C.-Y. (2011). A simplex volume maximization framework for hyperspectral endmember extraction, IEEE Transactions on Geoscience and Remote Sensing49(11): 4177–4193.10.1109/TGRS.2011.2141672
  9. Chen, D. and Plemmons, R.J. (2009). Nonnegativity constraints in numerical analysis, in A. Bultheel and R. Cools (Eds.), The Birth of Numerical Analysis, World Scientific, Singapore, pp. 109–139.10.1142/9789812836267_0008
  10. Chu, M.T. and Lin, M. M. (2008). Low dimensional polytype approximation and its applications to nonnegative matrix factorization, SIAM Journal of Scientific Computing30(3): 1131–1151.10.1137/070680436
  11. Cichocki, A., Zdunek, R., Phan, A.H. and Amari, S.-I. (2009). Nonnegative Matrix and Tensor Factorizations: Applications to Exploratory Multi-way Data Analysis and Blind Source Separation, Wiley and Sons, Chichester.10.1002/9780470747278
  12. Dabrowski, A. and Cetnarowicz, D. (2008). Iterative SVD algorithm as a BSS solution, Proceedings of the International Conference on Signals and Electronic Systems, IC-SES 2008, Cracow, Poland, pp. 401–404.
  13. Donoho, D. and Stodden, V. (2004). When does non-negative matrix factorization give a correct decomposition into parts?, in S. Thrun, L. Saul and B. Sch¨olkopf (Eds.), Advances in Neural Information Processing Systems (NIPS), Vol. 16, MIT Press, Cambridge, MA, pp. 1141–1148.
  14. Elden, L. (1977). Algorithms for the regularization of illconditioned least squares problems, BIT17(2): 134–145.10.1007/BF01932285
  15. Garda, B. and Galias, Z. (2012). Non-negative least squares and the Tikhonov regularization methods for coil design problems, Proceedings of the International Conference on Signals and Electronic Systems, ICSES’12, Wrocław, Poland.10.1109/ICSES.2012.6382220
  16. Gobinet, C., Perrin, E. and Huez, R. (2004). Application of nonnegative matrix factorization to fluorescence spectroscopy, Proceedings of the European Signal Processing Conference, EUSIPCO 2004, Vienna, Austria, pp. 1095–1098.
  17. Górecki, T. and Łuczak, M. (2013). Linear discriminant analysis with a generalization of the Moore–Penrose pseudoinverse, International Journal of Applied Mathematics and Computer Science23(2): 463–471, DOI: 10.2478/amcs-20130035.
  18. Guo, Z., Wittman, T. and Osher, S. (2009). L1 unmixing and its application to hyperspectral image enhancement, in S.S. Shen and P.E. Lewis (Eds.), Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XV, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 7334, International Society for Optical Engineering, Orlando, FL, p. 73341M+.10.1117/12.818245
  19. Hamza, A. and Brady, D. (2006). Reconstruction of reflectance spectra using robust nonnegative matrix factorization, IEEE Transactions on Signal Processing54(9): 3637– 3642.10.1109/TSP.2006.879282
  20. Hancewicz, T.M. and Wang, J.-H. (2005). Discriminant image resolution: A novel multivariate image analysis method utilizing a spatial classification constraint in addition to bilinear nonnegativity, Chemometrics and Intelligent Laboratory Systems77(1–2): 18–31.10.1016/j.chemolab.2004.07.013
  21. Hansen, P.C. (1998). Rank-Deficient and Discrete Ill-Posed Problems, SIAM, Philadelphia, PA.10.1137/1.9780898719697
  22. Heylen, R., Burazerovic, D. and Scheunders, P. (2011). Fully constrained least squares spectral unmixing by simplex projection, IEEE Transactions on Geoscience and Remote Sensing49(11): 4112–4122.10.1109/TGRS.2011.2155070
  23. Huck, A., Guillaume, M. and Blanc-Talon, J. (2010). Minimum dispersion constrained nonnegative matrix factorization to unmix hyperspectral data, IEEE Transactions on Geoscience and Remote Sensing48(6): 2590–2602.10.1109/TGRS.2009.2038483
  24. Hyvrinen, A., Karhunen, J. and Oja, E. (2001). Independent Component Analysis, John Wiley, New York, NY.10.1002/0471221317
  25. Igual, J. and Llinares, R. (2008). Nonnegative matrix factorization of laboratory astrophysical ice mixtures, IEEE Journal of Selected Topics in Signal Processing2(5): 697–706.10.1109/JSTSP.2008.2005324
  26. Igual, J., Llinares, R. and Salazar, A. (2006). Source separation of astrophysical ice mixtures, Proceedings of the 6th International Conference on Independent Component Analysis and Blind Signal Separation, Charleston, IL, USA, pp. 368–375.
  27. Iordache, M., Dias, J. and Plaza, A. (2011). Sparse unmixing of hyperspectral data, IEEE Transactions on on Geoscience and Remote Sensing49(2): 2014–2039.10.1109/TGRS.2010.2098413
  28. Iordache, M., Dias, J. and Plaza, A. (2012). Total variation spatial regularization for sparse hyperspectral unmixing, IEEE Transactions on Geoscience and Remote Sensing50(11): 4484–4502.10.1109/TGRS.2012.2191590
  29. Jia, S. and Qian, Y. (2009). Constrained nonnegative matrix factorization for hyperspectral unmixing, IEEE Transactions on Geoscience and Remote Sensing47(1): 161–173.10.1109/TGRS.2008.2002882
  30. Kim, D., Sra, S. and Dhillon, I.S. (2007). Fast Newtontype methods for the least squares nonnegative matrix approximation problem, Proceedings of the 6th SIAM International Conference on Data Mining, Minneapolis, MN, USA, pp. 343–354.
  31. Kim, H. and Park, H. (2008). Non-negative matrix factorization based on alternating non-negativity constrained least squares and active set method, SIAM Journal on Matrix Analysis and Applications30(2): 713–730.10.1137/07069239X
  32. Kim, J. and Park, H. (2011). Fast nonnegative matrix factorization: An active-set-like method and comparisons, SIAM Journal on Scientific Computing33(6): 3261–3281.10.1137/110821172
  33. Krawczyk-Sta´ndo, D. and Rudnicki, M. (2007). Regularization parameter selection in discrete ill-posed problems— The use of the U-curve, International Journal of Applied Mathematics and Computer Science17(2): 157–164, DOI: 10.2478/v10006-007-0014-3.10.2478/v10006-007-0014-3
  34. Kulczycki, P. and Charytanowicz, M. (2010). A complete gradient clustering algorithm formed with kernel estimators, International Journal of Applied Mathematics and Computer Science20(1): 123–134, DOI: 10.2478/v10006-010-0009-3.10.2478/v10006-010-0009-3
  35. Lawson, C.L. and Hanson, R.J. (1974). Solving Least Squares Problems, Prentice-Hall, Englewood Cliffs, NJ.
  36. Lee, D.D. and Seung, H.S. (1999). Learning the parts of objects by non-negative matrix factorization, Nature401(6755): 788–791.10.1038/4456510548103
  37. Li, H., Adali, T., Wang, W., Emge, D. and Cichocki, A. (2007). Non-negative matrix factorization with orthogonality constraints and its application to Raman spectroscopy, The Journal of VLSI Signal Processing48(1–2): 83–97.10.1007/s11265-006-0039-0
  38. Li, J. and Bioucas-Dias, J.M. (2008). Minimum volume simplex analysis: A fast algorithm to unmix hyperspectral data, Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2008, Boston, MA, USA, Vol. 3, pp. 250–253.
  39. Likic, V.A. (2009). Extraction of pure components from overlapped signals in gas chromatography-mass spectrometry (GC-MS), BioData Mining2(6): 1–11.10.1186/1756-0381-2-6277054919818154
  40. Lin, C.-J. (2007). Projected gradient methods for non-negative matrix factorization, Neural Computation19(10): 2756– 2779.10.1162/neco.2007.19.10.275617716011
  41. Llinares, R., Igual, J., Mir´o-Borr´as, J. and Camacho, A. (2010). Analysis of astrophysical ice analogs using regularized alternating least squares, Proceedings of the 20th International Conference on Artificial Neural Networks, ICANN 2010, Thessaloniki, Greece, pp. 199–204.
  42. Makowski, R. (2003). Source pulse estimation of mine shocks by blind deconvolution, Pure and Applied Geophysics160(7): 1191–1205.10.1007/s000240300001
  43. Miao, L. and Qi, H. (2007). Endmember extraction from highly mixed data using minimum volume constrained nonnegative matrix factorization, IEEE Transactions on Geoscience and Remote Sensing45(3): 765–777.10.1109/TGRS.2006.888466
  44. Miron, S., Dossot, M., Carteret, C., Margueron, S. and Brie, D. (2011). Joint processing of the parallel and crossed polarized Raman spectra and uniqueness in blind nonnegative source separation, Chemometrics and Intelligent Laboratory Systems105(1): 7–18.10.1016/j.chemolab.2010.10.005
  45. Nascimento, J.M.P. and Bioucas-Dias, J.M. (2005). Vertex component analysis: A fast algorithm to unmix hyperspectral data, IEEE Transactions on Geoscience and Remote Sensing43(4): 898–910.10.1109/TGRS.2005.844293
  46. Pauca, V.P., Pipera, J. and Plemmons, R.J. (2006). Nonnegative matrix factorization for spectral data analysis, Linear Algebra and Its Applications416(1): 29–47.10.1016/j.laa.2005.06.025
  47. Pengo, T., Munoz-Barrutia, A. and de Solorzano, C.O. (2010). Spectral unmixing of multiply stained fluorescence samples, in A. Mendez-Vilas and J. Diaz (Eds.), Microscopy: Science, Technology, Applications and Education, Microscopy Book Series, No. 4, Formatex Research Center, Badajoz, pp. 2079–2087.
  48. Plaza, J., Hendrix, E.M.T., Garc´ıa, I., Martin, G. and Plaza, A. (2012). On endmember identification in hyperspectral images without pure pixels: A comparison of algorithms, Journal of Mathematical Imaging and Vision42(2– 3): 163–175.10.1007/s10851-011-0276-0
  49. Qian, Y., Jia, S., Zhou, J. and Robles-Kelly, A. (2011). Hyperspectral unmixing via l1/2 sparsity-constrained nonnegative matrix factorization, IEEE Transactions on Geoscience and Remote Sensing49(11): 4282–4297.10.1109/TGRS.2011.2144605
  50. Rojas, M. and Steihaug, T. (2002). An interior-point trustregion-based method for large-scale non-negative regularization, Inverse Problems18(5): 1291–1307.10.1088/0266-5611/18/5/305
  51. Sajda, P., Du, S., Brown, T., Parra, L. and Stoyanova, R. (2003). Recovery of constituent spectra in 3D chemical shift imaging using nonnegative matrix factorization, Proceedings of the 4th International Symposium on Independent Component Analysis and Blind Signal Separation, Nara, Japan, pp. 71–76.
  52. Sajda, P., Du, S., Brown, T.R., Stoyanova, R., Shungu, D.C., Mao, X. and Parra, L.C. (2004). Nonnegative matrix factorization for rapid recovery of constituent spectra in magnetic resonance chemical shift imaging of the brain, IEEE Transactions on Medical Imaging23(12): 1453–1465.10.1109/TMI.2004.83462615575404
  53. Siwek, K., Osowski, S. and Szupiluk, R. (2009). Ensemble neural network approach for accurate load forecasting in a power system, International Journal of Applied Mathematics and Computer Science19(2): 303–315, DOI: 10.2478/v10006-009-0026-2.10.2478/v10006-009-0026-2
  54. Tong, L., van der Veen, A.-J., Dewilde, P. and Sung, Y. (2003). Blind decorrelating RAKE receivers for longcode WCDMA, IEEE Transactions on Signal Processing51(6): 1642–1655.10.1109/TSP.2003.811230
  55. Wózniak, M. and Krawczyk, B. (2012). Combined classifier based on feature space partitioning, International Journal of Applied Mathematics and Computer Science22(4): 855– 866, DOI: 10.2478/v10006-012-0063-0.10.2478/v10006-012-0063-0
  56. Zdunek, R. (2011). Regularized active set least squares algorithm for nonnegative matrix factorization in application to Raman spectra separation, in J. Cabestany, I. Rojas and G. Joya (Eds.), Advances in Computational Intelligence, Lecture Notes in Computer Science, Vol. 6692, Springer, Berlin/Heidelberg, pp. 492–499.10.1007/978-3-642-21498-1_62
  57. Zdunek, R. (2012). Hyperspectral image unmixing with nonnegative matrix factorization, Proceedings of the IEEE International Conference on Signals and Electronic Systems, ICSES 2012, Wrocław, Poland.10.1109/ICSES.2012.6382219
  58. Zdunek, R. and Cichocki, A. (2007). Nonnegative matrix factorization with constrained second-order optimization, Signal Processing87(8): 1904–1916.10.1016/j.sigpro.2007.01.024
  59. Zhang, J., Rivard, B. and Rogge, D.M. (2008). The successive projection algorithm (SPA), an algorithm with a spatial constraint for the automatic search of endmembers in hyperspectral data, Sensors8(2): 1321–1342.10.3390/s8021321392751227879768
  60. Zymnis, A., Kim, S.-J., Skaf, J., Parente, M. and Boyd, S. (2007). Hyperspectral image unmixing via alternating projected subgradients, Proceedings of the 41st Asilomar Conference on Signals, Systems and Computers, ACSSC 2007, Pacific Grove, CA, USA, pp. 1164–1168.
DOI: https://doi.org/10.2478/amcs-2014-0017 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 233 - 247
Submitted on: Jan 9, 2013
Accepted on: Jan 8, 2014
Published on: Jun 26, 2014
Published by: University of Zielona Góra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2014 Rafał Zdunek, published by University of Zielona Góra
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.