Aggarwal, C.C., Han, J., Wang, J. and Yu, P.S. (2003). A framework for clustering evolving data streams, Proceedingsof the 29th International Conference on Very LargeData Bases, Berlin, Germany, pp. 81-92.
Allan, J., Papka, R. and Lavrenko, V. (1998). On-line new event detection and tracking, Proceedings of the 21st AnnualInternational ACM SIGIR Conference on Researchand Development in Information Retrieval (SIGIR 1998),Melbourne, Australia, pp. 37-45.
Amati, G., Amodeo, G. and Gaibisso, C. (2012). Survival analysis for freshness in microblogging search, Proceedingsof the 21st ACM International Conference on Informationand Knowledge Management (CIKM-2012), Maui,HI, USA, pp. 2483-2486.
Amodeo, G., Blanco, R. and Brefeld, U. (2011). Hybrid models for future event prediction, Proceedings of the 20th ACMInternational Conference on Information and KnowledgeManagement (CIKM-2011), Glasgow, UK, pp. 1981-1984.
Babcock, B., Babu, S., Datar, M., Motwani, R. and Widom, J. (2002). Models and issues in data stream systems, Proceedings of the 21st ACM SIGACT-SIGMOD-SIGARTSymposium on Principles of Database Systems, Madison,WI, USA, pp. 1-16.
Beringer, J. and H¨ullermeier, E. (2006). Online clustering of parallel data streams, Data and Knowledge Engineering58(2): 180-204.10.1016/j.datak.2005.05.009
Bottou, L. (1998). Online algorithms and stochastic approximations, in D. Saad (Ed.), Online Learningand Neural Networks, Cambridge University Press, Cambridge.
Chen, G.,Wu, X. and Zhu, X. (2005). Sequential pattern mining in multiple streams, Proceedings of the 5th IEEE InternationalConference on Data Mining (ICDM), Houston, TX,USA, pp. 585-588.
Cheon, S.-P., Kim, S., Lee, S.-Y. and Lee, C.-B. (2009). Bayesian networks based rare event prediction with sensor data, Knowledge-Based Systems 22(5): 336-343.10.1016/j.knosys.2009.02.004
Cherniack, M., Balakrishnan, H., Balazinska, M., Carney, D., Cetintemel, U., Xing, Y. and Zdonik, S. (2003). Scalable distributed stream processing, Proceedings of CIDR-03:1st Biennial Conference on Innovative Database Systems,Asilomar, CA, USA.
Considine, J., Li, F., Kollios, G. and Byers, J. (2004). Approximate aggregation techniques for sensor databases, ICDE-04: 20th IEEE International Conference on DataEngineering, Boston, MA, USA, pp. 449-460.
Cormode, G. and Muthukrishnan, S. (2005). What’s hot and what’s not: Tracking most frequent items dynamically, ACM Transactions on Database Systems 30(1): 249-278.10.1145/1061318.1061325
Das, A., Gehrke, J. and Riedewald, M. (2003). Approximate join processing over data streams, Proceedings of the 2003 ACM SIGMOD International Conference on Managementof Data, San Diego, CA, USA, pp. 40-51.
Domingos, P. and Hulten, G. (2003). A general framework for mining massive data streams, Journal of Computationaland Graphical Statistics 12(4): 945-949. 10.1198/1061860032544
Gama, J. (2012). A survey on learning from data streams: Current and future trends, Progress in Artificial Intelligence1(1): 45-55.10.1007/s13748-011-0002-6
Garofalakis, M., Gehrke, J. and Rastogi, R. (2002). Querying and mining data streams: You only get one look, Proceedingsof the 2002 ACM SIGMOD International Conferenceon Management of Data, Madison, WI, USA, pp. 635-635.
Hulten, G., Spencer, L. and Domingos, P. (2001). Mining time-changing data streams, Proceedings of the 7th ACMSIGKDD International Conference on Knowledge Discoveryand Data Mining, San Francisco, CA, USA, pp. 97-106.
Ikonomovska, E., Gama, J. and Dzeroski, S. (2011). Learning model trees from evolving data streams, Data Mining andKnowledge Discovery 23(1): 128-168.10.1007/s10618-010-0201-y
Krizanovic, K., Galic, Z. and Baranovic, M. (2011). Data types and operations for spatio-temporal data streams, IEEEInternational Conference on Mobile Data Management(MDM), Lule°a, Sweden, pp. 11-14.
Li, R., Lei, K.H., Khadiwala, R. and Chang, K.C.-C. (2012). Tedas: A twitter-based event detection and analysis system, Proceedings of the IEEE 28th International Conferenceon Data Engineering (ICDE 2012), Washington,DC, USA, pp. 1273-1276.
Oliveira, M. and Gama, J. (2012). A framework to monitor clusters evolution applied to economy and finance problems, Intelligent Data Analysis 16(1): 93-111.10.3233/IDA-2011-0512
Radinsky, K. and Horvitz, E. (2013). Mining the web to predict future events, Proceedings of the 6th ACM InternationalConference on Web Search and Data Mining(WSDM 2013), Rome, Italy, pp. 255-264.
Sakaki, T., Okazaki, M. and Matsuo, Y. (2013). Tweet analysis for real-time event detection and earthquake reporting system development, IEEE Transactions on Knowledgeand Data Engineering 25(4): 919-931. 10.1109/TKDE.2012.29
Weng, J. and Lee, B.-S. (2011). Event detection in twitter, Proceedingsof the 5th International Conference on Weblogsand Social Media (ICWSM 2011), Barcelona, Spain.
Yang, Y., Pierce, T. and Carbonell, J.G. (1998). A study of retrospective and on-line event detection, Proceedings ofthe 21st Annual International ACM SIGIR Conference onResearch and Development in Information Retrieval (SIGIR1998), Melbourne, Australia, pp. 28-36.
Zupan, B., Demˇsar, J., Kattan, M.W., Beck, J.R. and Bratko, I. (2000). Machine learning for survival analysis: A case study on recurrence of prostate cancer, Artificial Intelligencein Medicine 20(1): 59-75. 10.1016/S0933-3657(00)00053-1