Chang, Y.F., Lee, J.C., Mohd Rijal, O. and Syed Abu Bakar, S.A.R. (2010). Efficient online handwritten Chinese character recognition system using a two-dimensional functional relationship model, International Journal of AppliedMathematics and Computer Science 20(4): 727-738, DOI: 10.2478/v10006-010-0055-x.10.2478/v10006-010-0055-x
Ciresan, D.C., Meier, U. and Schmidhuber, J. (2012). Multi-column deep neural networks for image classification, Proceedings of the 2012 IEEE Conferenceon Computer Vision and Pattern Recognition(CVPR), Providence, RI, USA, pp. 3642-3649.
Fabijańska, A. (2012). A survey of subpixel edge detection methods for images of heat-emitting metal specimens, International Journal of Applied Mathematicsand Computer Science 22(3): 695-710, DOI: 10.2478/v10006-012-0052-3.10.2478/v10006-012-0052-3
Galvan Lopez, E., Poli, R. and Coello Coello, C.A. (2004). Reusing code in genetic programming, in M. Keijzer, U.-M. O’Reilly, S.M. Lucas, E. Costa and T. Soule (Eds.), Genetic Programming-7th European Conference,EuroGP 2004, Proceedings, Lecture Notes in Computer Science, Vol. 3003, Springer-Verlag, Berlin/Heidelberg, pp. 359-368.10.1007/978-3-540-24650-3_34
Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P. and Witten, I.H. (2009). The Weka data mining software: An update, SIGKDD Explorations 11(1): 10-18.10.1145/1656274.1656278
Haynes, T. (1997). On-line adaptation of search via knowledge reuse, in J.R. Koza, K. Deb, M. Dorigo, D.B. Fogel, M. Garzon, H. Iba and R.L. Riolo (Eds.), GeneticProgramming 1997: Proceedings of the Second AnnualConference, Morgan Kaufmann, San Francisco, CA, pp. 156-161.
Hornby, G.S. and Pollack, J.B. (2002). Creating high-level components with a generative representation for body-brain evolution, Artificial Life 8(3): 223-246.10.1162/10645460232099183712537684
Howard, D. (2003). Modularization by multi-run frequency driven subtree encapsulation, in R.L. Riolo and B. Worzel (Eds.), Genetic Programming Theory and Practice, Kluwer, New York, NY, Chapter 10, pp. 155-172.10.1007/978-1-4419-8983-3_10
Howard, D., Roberts, S.C. and Ryan, C. (2006). Pragmatic genetic programming strategy for the problem of vehicle detection in airborne reconnaissance, Pattern RecognitionLetters 27(11): 1275-1288.10.1016/j.patrec.2005.07.025
Hsu, W.H., Harmon, S.J., Rodriguez, E. and Zhong, C. (2004). Empirical comparison of incremental reuse strategies in genetic programming for keep-away soccer, in M. Keijzer (Ed.), Late Breaking Papers at the 2004 Genetic andEvolutionary Computation Conference, Association for Computing Machinery, Seattle, WA.
Jaśkowski, W., Krawiec, K. and Wieloch, B. (2007a). Genetic programming for cross-task knowledge sharing, in D. Thierens (Ed.), Genetic and Evolutionary ComputationConference GECCO, Association for Computing Machinery, London, pp. 1620-1627.10.1145/1276958.1277281
Jaśkowski, W., Krawiec, K. and Wieloch, B. (2007b). Knowledge reuse in genetic programming applied to visual learning, in D. Thierens (Ed.), Genetic and EvolutionaryComputation Conference GECCO, Association for Computing Machinery, London, pp. 1790-1797.10.1145/1276958.1277318
Jaśkowski, W., Krawiec, K. and Wieloch, B. (2007c). Learning and recognition of hand-drawn shapes using generative genetic programming, in M. Giacobini (Ed.), EvoWorkshops2007, Lecture Notes in Computer Science, Vol. 4448, Springer-Verlag, Berlin/Heidelberg, pp. 281-290.
Koza, J.R., Bennett III, F.H., Andre, D. and Keane, M.A. (1996). Reuse, parameterized reuse, and hierarchical reuse of substructures in evolving electrical circuits using genetic programming, in T. Higuchi (Ed.), Proceedings of InternationalConference on Evolvable Systems: From Biology toHardware (ICES-96), Lecture Notes in Computer Science, Vol. 1259, Springer-Verlag, Berlin.
Krawiec, K. (2006). Learning high-level visual concepts using attributed primitives and genetic programming, in F. Rothlauf (Ed.), EvoWorkshops 2006, Lecture Notes in Computer Science, Vol. 3907, Springer-Verlag, Berlin/Heidelberg, pp. 515-519.10.1007/11732242_48
Krawiec, K. and Bhanu, B. (2005). Visual learning by coevolutionary feature synthesis, IEEE Transactions onSystem, Man, and Cybernetics, Part B 35(3): 409-425.10.1109/TSMCB.2005.846644
Kurashige, K., Fukuda, T. and Hoshino, H. (2003). Reusing primitive and acquired motion knowledge for gait generation of a six-legged robot using genetic programming, Journal of Intelligent and Robotic Systems38(1): 121-134. 10.1023/A:1026204313001
Li, B., Li, X., Mabu, S. and Hirasawa, K. (2012). Towards automatic discovery and reuse of subroutines in variable size genetic network programming, in X. Li (Ed.), Proceedingsof the 2012 IEEE Congress on Evolutionary Computation,Brisbane, Australia, pp. 485-492.
Louis, S. and McDonnell, J. (2004). Learning with case-injected genetic algorithms, IEEE Transactions on EvolutionaryComputation 8(4): 316-328.10.1109/TEVC.2004.823466
Moya, M.R., Koch, M.W. and Hostetler, L.D. (1993). One-class classifier networks for target recognition applications, World Congress on Neural Networks, Portland, OR, USA, pp. 797-801.
O’Sullivan, J. and Thrun, S. (1995). A Robot That ImprovesIts Ability to Learn, Carnegie Mellon University, School of Computer Science, Pittsburgh, PA.
Perez, C.B. and Olague, G. (2013). Genetic programming as strategy for learning image descriptor operators, IntelligentData Analysis 17(4): 561-583.10.3233/IDA-130594
Pratt, L.Y., Mostow, J. and Kamm, C.A. (1991). Direct transfer of learned information among neural networks, Proceedingsof the 9th National Conference on Artificial Intelligence(AAAI-91), Anaheim, CA, USA, pp. 584-589.
Roberts, S.C., Howard, D. and Koza, J.R. (2001). Evolving modules in genetic programming by subtree encapsulation, in J.F. Miller (Ed.), Genetic Programming, Proceedings ofEuroGP’2001, Lecture Notes in Computer Science, Vol. 2038, Springer-Verlag, Berlin, pp. 160-175.10.1007/3-540-45355-5_13
Rosca, J.P. and Ballard, D.H. (1996). Discovery of subroutines in genetic programming, in P.J.Angeline and K.E.Kinnear, Jr. (Eds.), Advances in Genetic Programming 2,MIT Press, Cambridge, MA, Chapter 9, pp. 177-202.
Seront, G. (1995). External concepts reuse in genetic programming, in E.V. Siegel and J.R. Koza (Eds.), WorkingNotes for the AAAI Symposium on Genetic Programming, AAAI/MIT, Cambridge, MA, pp. 94-98.
Tackett,W.A. (1993). Genetic generation of “dendritic” trees for image classification, Proceedings of theWorld Congress onNeural Networks, Portland, OR, USA, pp. IV 646-649.
Teller, A. and Veloso, M. (1997). PADO: A new learning architecture for object recognition, in K. Ikeuchi and M. Veloso (Eds.), Symbolic Visual Learning, Oxford Press, New York, NY, pp. 77-112.
Trujillo, L. and Olague, G. (2006). Synthesis of interest point detectors through genetic programming, in M. Cattolico (Ed.), Genetic and Evolutionary Computation ConferenceGECCO, Association for Computing Machinery, Seattle, WA, pp. 887-894.10.1145/1143997.1144151
Whitley, D., Rana, S. and Heckendorn, R. (1999). The island model genetic algorithm: On separability, population size and convergence, Journal of Computing and InformationTechnology 7(1): 33-47.