Have a personal or library account? Click to login
Approximation of phenol concentration using novel hybrid computational intelligence methods Cover

Approximation of phenol concentration using novel hybrid computational intelligence methods

Open Access
|Mar 2014

References

  1. Antonelli, M., Ducange, P., Lazzerini, B. and Marcelloni, F. (2009). Learning concurrently partition granularities and rule bases of Mamdani fuzzy systems in a multi-objective evolutionary framework, International Journal of ApproximateReasoning 50(7): 1066-1080.10.1016/j.ijar.2009.04.004
  2. Aydogan, E., Karaoglan, I. and Pardalos, P. (2012). hGA: Hybrid genetic algorithm in fuzzy rule-based classification systems for high-dimensional problems, Applied Soft Computing12(2): 800-806.10.1016/j.asoc.2011.10.010
  3. Benrekia, F., Attari, M. and Bermak, A. (2009). FPGA implementation of a neural network classifier for gas sensor array applications, Proceedings of the 6th IEEE InternationalMulti-Conference on Systems, Signals and Devices,Djerba, Tunisia.10.1109/SSD.2009.4956804
  4. Cevoli, C., Cerretani, L., Gori, A., Caboni, M., Gallina, T., Toschi and Fabbri, A. (2011). Classification of Pecorino cheeses using electronic nose combined with artificial neural network and comparison with GC-MS analysis of volatile compounds, Food Chemistry 129(3): 1315-1319.10.1016/j.foodchem.2011.05.12625212373
  5. Chandra, R., Frean, M., Zhang, M. and Omlin, C. (2011). Encoding subcomponents in cooperative co-evolutionary recurrent neural networks, Neurocomputing74(17): 3223-3234.10.1016/j.neucom.2011.05.003
  6. Cheng, M.-Y., Tsai, H.-C. and Sudjono, E. (2010). Evolutionary fuzzy hybrid neural network for project cash flow control, Engineering Applications of Artificial Intelligence23(4): 604-613.10.1016/j.engappai.2009.10.003
  7. Cheshmehgaz, H., Haron, H., Kazemipour, F. and Desa, M. (2012). Accumulated risk of body postures in assembly line balancing problem and modeling through a multi-criteria fuzzy-genetic algorithm, Computers & IndustrialEngineering 63(2): 503-512.10.1016/j.cie.2012.03.017
  8. Czogała, E. and ٞeski, J. (2000). Fuzzy and Neuro-Fuzzy IntelligentSystems, Physica-Verlag, Springer-Verlag Com., Heidelberg/New York, NY.
  9. Font, J., Manrique, D. and Rios, J. (2010). Evolutionary construction and adaptation of intelligent systems, ExpertSystems with Applications 37(12): 7711-7720.10.1016/j.eswa.2010.04.070
  10. Ghasemi-Varnamkhasti, M., Mohtasebi, S., Siadat, M., Lozano, J., Ahmadi, H., Razavi, S. and Dicko, A. (2011). Aging fingerprint characterization of beer using electronic nose, Sensors and Actuators B: Chemical 159(1): 51-59.10.1016/j.snb.2011.06.036
  11. Ihokura, K. and Watson, J. (1994). The Stannic Oxide Gas Sensor:Principles and Applications, CRC Press, Boca Raton, FL.
  12. Lin, C.-J. and Chen, C.-H. (2011). Nonlinear system control using self-evolving neural fuzzy inference networks with reinforcement evolutionary learning, Applied Soft Computing11(8): 5463-5476.10.1016/j.asoc.2011.05.012
  13. Maziarz, W. and Pisarkiewicz, T. (2008). Gas sensors in a dynamic operation mode, Measurement Science and Technology19(5): 055205.10.1088/0957-0233/19/5/055205
  14. Maziarz, W., Potempa, P., Sutor, A. and Pisarkiewicz, T. (2003). Dynamic response of a semiconductor gas sensor analysed with the help of fuzzy logic, Thin Solid Films436(1): 127-131.10.1016/S0040-6090(03)00507-8
  15. M.O.S., A. (2002). Technical note, Toulouse, ND, www.alpha-mos.com.
  16. Nakata, S., Neya, K. and Takemura, K. (2001). Non-linear dynamic responses of a semiconductor gas sensor: Competition effect on the sensor responses to gaseous mixtures, Thin Solid Films 391(2): 293-298.10.1016/S0040-6090(01)00998-1
  17. Nomura, T., Fujimori, Y., Kitora, M., Matsuura, Y. and Aso, I. (1998). Battery operated semiconductor CO sensor using pulse heating method, Sensors and Actuators B52(1): 90-95.10.1016/S0925-4005(98)00261-5
  18. Patan, K. and Patan, M. (2011). Optimal training strategies for locally recurrent neural networks, Journal of Artificial Intelligenceand Soft Computing Research 1(22): 103-114.
  19. Romain, A.-C., Nicolas, J.,Wiertz, V., Maternova, J. and Andre, P. (2000). Use of a simple tin oxide sensor array to identify five malodours collected in the field, Sensors and ActuatorsB: Chemical 62(1): 73-79.10.1016/S0925-4005(99)00375-5
  20. Rutkowski, L. (2008). Computational Intelligence: Methods andTechniques, Springer, Berlin.10.1007/978-3-540-76288-1
  21. Shahlaei, M., Madadkar-Sobhani, A., Saghaie, L. and Fassihi, A. (2012). Application of an expert system based on Genetic Algorithm-Adaptive Neuro-Fuzzy Inference System (GA-ANFIS) in QSAR of cathepsin K inhibitors, Expert Systems with Applications 39(6): 6182-6191.10.1016/j.eswa.2011.11.106
  22. Snopok, B. and Kruglenko, I. (2002). Multisensor systems for chemical analysis: State-of-the-art in electronic nose technology and new trends in machine olfaction, Thin SolidFilms 418(1): 21-41.10.1016/S0040-6090(02)00581-3
  23. Su, C.-L.,Yang, S. and Huang,W. (2011). A two-stage algorithm integrating genetic algorithm and modified Newton method for neural network training in engineering systems, ExpertSystems with Applications 38(10): 12189-12194.10.1016/j.eswa.2011.03.073
  24. Tabor, Z. (2009). Statistical estimation of the dynamics of watershed dams, International Journal of Applied Mathematicsand Computer Science 19(2): 349-360, DOI: 10.2478/v10006-009-0030-6.10.2478/v10006-009-0030-6
  25. Tabor, Z. (2010). Surrogate data: A novel approach to object detection, International Journal of Applied Mathematicsand Computer Science 20(3): 545-553, DOI: 10.2478/v10006-010-0040-4.10.2478/v10006-010-0040-4
  26. Tadeusiewicz, R. (2010a). New Trends in Neurocybernetics, Computer Methods in Materials Science 10(1): 1-7.
  27. Tadeusiewicz, R. (2010b). Place and role of intelligent systems in computer science, Computer Methods in MaterialsScience 10(4): 193-206. Tadeusiewicz, R. (2011a). How intelligent should be system for image analysis? in H. Kwasnicka and L.C. Jain (Eds.), Innovations in Intelligent Image Analysis, Studies in Computational Intelligence, Vol. 339, Springer-Verlag, Berlin/Heidelberg/New York, NY.
  28. Tadeusiewicz, R. (2011b). Introduction to intelligent systems, in B.M. Wilamowski and J.D. Irvin (Eds.), The IndustrialElectronics Handbook-Intelligent Systems, CRC Press, Boca Raton, FL.
  29. Tadeusiewicz, R. and Morajda, J. (2012). Artificial intelligence methods, in P. Lula and G. Paliwoda-Pekosz (Eds.), Analysisand Data Processing Computer Methods, Cracow University of Economics Publishing House, Cracow.
  30. Tallon-Ballesteros, A. and Hervas-Martinez, C. (2011). A two-stage algorithm in evolutionary product unit neural networks for classification, Expert Systems with Applications38(1): 743-754.10.1016/j.eswa.2010.07.028
  31. Tong, D. and Schierz, A. (2011). Hybrid genetic algorithm-neural network: Feature extraction for unpreprocessed microarray data, Artificial Intelligencein Medicine 53(1): 47-56.10.1016/j.artmed.2011.06.00821775110
  32. Yang, S.-H. and Chen, Y.-P. (2012). An evolutionary constructive and pruning algorithm for artificial neural networks and its prediction applications, Neurocomputing86(1): 140-149.10.1016/j.neucom.2012.01.024
  33. Yu, H., Wang, J., Xiao, H. and Liu, M. (2009). Quality grade identification of green tea using the eigenvalues of PCA based on the E-nose signals, Sensors and Actuators B: Chemical140(2): 378-382.10.1016/j.snb.2009.05.008
  34. Zhang, L., Tian, F., Kadri, C., Pei, G., Li, H. and Pan, L. (2011). Gases concentration estimation using heuristics and bio-inspired optimization models for experimental chemical electronic nose, Sensors and Actuators B: Chemical160(1): 760-770. 10.1016/j.snb.2011.08.060
DOI: https://doi.org/10.2478/amcs-2014-0013 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 165 - 181
Published on: Mar 25, 2014
Published by: Sciendo
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2014 Pawel Plawiak, Ryszard Tadeusiewicz, published by Sciendo
This work is licensed under the Creative Commons License.