Have a personal or library account? Click to login
Center-based  l1–clustering method Cover

References

  1. Angulo, J. and Serra, J. (2007). Modelling and segmentation of colour images in polar representations, Image and VisionComputing 25(4): 475-495.10.1016/j.imavis.2006.07.018
  2. Äyrämö, S. (2006). Knowledge Mining Using Robust Clustering, Ph.D. thesis, University of Jyväskylä, Jyväskylä.
  3. Bagirov, A.M. and Ugon, J. (2005). An algorithm for minimizing clustering functions, Optimization54(4-5): 351-368.10.1080/02331930500096155
  4. Bagirov, A.M., Ugon, J. and Webb, D. (2011). Fast modified global k-means algorithm for incremental cluster construction, Pattern Recognition 44(4): 886-876.10.1016/j.patcog.2010.10.018
  5. Bezdek, J.C. (1981). Pattern Recognition with Fuzzy ObjectiveFunction Algorithms, Kluwer Academic Publishers, Norwell, MA.10.1007/978-1-4757-0450-1
  6. Boyd, D.L. and Vandenberghe, L. (2004). Convex Optimization, Cambridge University Press, Cambridge.10.1017/CBO9780511804441
  7. Chaovalitwongse, W.A., Butenko, S. and Pardalos, P.M., (Eds.) (2009). Clustering Challenges in Biological Networks, World Scientific, London.
  8. Choulakian, V. (2001). Robust q-mode principal component analysis in L1, Computational Statistics & Data Analysis, 37(2): 135-150.10.1016/S0167-9473(01)00005-6
  9. Clarke, F. H., (1990). Optimization and Nonsmooth Analysis, SIAM, Philadelphia, PA.10.1137/1.9781611971309
  10. Cominetti, R. and Michelot, C. (1997 ). Sufficient conditions for coincidence in l1-minisum multifacility location problems, Operations Research Letters 20(4): 179-185.10.1016/S0167-6377(96)00051-X
  11. Cord, A., Ambroise, C. and Cocquerez, J.-P. (2006 ). Feature selection in robust clustering based on Laplace mixture, Pattern Recognition Letters 27(6): 627-635.10.1016/j.patrec.2005.09.028
  12. Cupec, R., Grbi´c, R., Sabo, K. and Scitovski, R. (2009). Three points method for searching the best least absolute deviations plane, Applied Mathematics and Computation215(3): 983-994.10.1016/j.amc.2009.06.023
  13. Duda, R., Hart, P. and Stork, D. (2001). Pattern Classification, Wiley, New York, NY.
  14. Finkel, D.E. and Kelley, C.T. (2006). Additive scaling and the DIRECT algorithm, Journal of Global Optimization36(4): 597-608.10.1007/s10898-006-9029-9
  15. Floudas, C.A. and Gounaris, C.E. (2009). A review of recent advances in global optimization, Journal of Global Optimization45(4): 3-38.10.1007/s10898-008-9332-8
  16. Frąckiewicz, M. and Palus, H. (2011). KHM clustering techique as a segmentation method for endoscopic colour images, International Journal of Applied Mathematicsand Computer Science 21(1): 203-209, DOI: 10.2478/v10006-011-0015-0.10.2478/v10006-011-0015-0
  17. Gan, G., Ma, C. and Wu, J. (2007). Data Clustering: Theory,Algorithms, and Applications, SIAM, Philadelphia, PA.10.1137/1.9780898718348
  18. Grbić, R., Nyarko, E.K. and Scitovski, R. (2012). A modification of the direct method for Lipschitz global optimization for a symmetric function, Journal of Global Optimization, 57(4): 1193-1212, DOI: 10.1007/s10898-012-0020-3.10.1007/s10898-012-0020-3
  19. Grbić , R., Scitovski, K., Sabo, K. and Scitovski, R. (2013). Approximating surfaces by the moving least absolute deviations method, Applied Mathematics and Computation219(9): 4387-4399.10.1016/j.amc.2012.10.041
  20. Gurwitz, C. (1990). Weighted median algorithms for l1 approximation, BIT 30(2): 301-310.10.1007/BF02017350
  21. Hathaway, R.J. and Bezdek, J.C. (2001). Fuzzy c-means clustering of incomplete data, IEEE Transactions onSystems, Man, and Cybernetics, Part B: Cybernetics31(5): 735-744.10.1109/3477.95603518244838
  22. Hubert, L. and Arabie, P. (1985). Comparing partitions, Journalof Classification 2(1): 193-218.10.1007/BF01908075
  23. Jain, A. (2010). 50 years beyond k-means, Pattern RecognitionLetters 31(8): 651-666.10.1016/j.patrec.2009.09.011
  24. Jajuga, K. (1987). A clustering method based on the L1-norm, Computational Statistics & Data Analysis 5(4): 357-371.10.1016/0167-9473(87)90058-2
  25. Jajuga, K. (1991). L1-norm based fuzzy clustering, Fuzzy Setsand Systems 39(1): 43-50.10.1016/0165-0114(91)90064-W
  26. Iyigun, C. (2007). Probabilistic Distance Clustering, Ph.D. thesis, Graduate School, Rutgers, New Brunswick, NJ.
  27. Jones, D.R., Perttunen, C.D. and Stuckman, B.E. (1993).
  28. Lipschitzian optimization without the Lipschitz constant, Journal of Optimization Theory and Applications79(1): 157-181. 10.1007/BF00941892
  29. Jörnsten, R. (2004). Clustering and classification based on the L1 data depth, Journal of Multivariate Analysis90(1): 67-89.10.1016/j.jmva.2004.02.013
  30. Kogan, J. (2007). Introduction to Clustering Large andHigh-Dimensional Data, Cambridge University Press, Cambridge.
  31. Leisch, F. (2006). A toolbox for k-centroids cluster analysis, Computational Statistics & Data Analysis 51(2): 526-544.10.1016/j.csda.2005.10.006
  32. Li, X. Hu, W., Wang, H. and Zhang, Z. (2010). Linear discriminant analysis using rotational invariant L1 norm, Neurocomputing 73(13-15): 2571-2579.10.1016/j.neucom.2010.05.016
  33. Scitovski, R. and Scitovski, S. (2013). A fast partitioning algorithm and its application to earthquake investigation, Computers and Geosciences 59(1): 124-131.10.1016/j.cageo.2013.06.010
  34. Simiński, K. (2012). Neuro-rough-fuzzy approach for regression modelling from missing data, International Journal of AppliedMathematics and Computer Science 22(2): 461-476, DOI: 10.2478/v10006-012-0035-4.10.2478/v10006-012-0035-4
  35. Späth, H. (1976). L1-cluster analysis, Computing16(4): 379-387.10.1007/BF02252086
  36. Späth, H. (1987). Using the L1-norm within cluster analysis, in Y. Dodge (Ed.), Proceedings of the First InternationalConference on Statistical Data Analysis Based on theL1-Norm and Related Methods, University of Neuchatel/Switzerland, August 31-September 04, 1987, Elsevier, Amsterdam, pp. 427-434.
  37. Malinen, M.I. and Fränti, P. (2012). Clustering by analytic functions, Information Sciences 217(1): 31-38.10.1016/j.ins.2012.06.018
  38. Meng, D., Zhao, Q and Xu, Z. (2012). Improve robustness of sparse PCA by L1-norm maximization, Pattern Recognition45(1): 487-497.10.1016/j.patcog.2011.07.009
  39. Pintér, J.D. (1996). Global Optimization in Action (Continuousand Lipschitz Optimization: Algorithms, Implementationsand Applications), Kluwer Academic Publishers, Dordrecht.
  40. Ruszczynski, A (2006). Nonlinear Optimization, Princeton University Press, Princeton/Oxford, NJ.
  41. Sabo, K. and Scitovski, R. (2008). The best least absolute deviations line-properties and two efficient methods, ANZIAMJournal 50(2): 185-198.10.1017/S1446181108000345
  42. Sabo, K., Scitovski, R. and Vazler, I. (2011). Searching for a best LAD-solution of an overdetermined system of linear equations motivated by searching for a best LAD-hyperplane on the basis of given data, Journal ofOptimization Theory and Applications 149(2): 293-314.10.1007/s10957-010-9791-1
  43. Sabo, K., Scitovski, R. and Vazler, I. (2012). One-dimensional center-based l1-clustering method, Optimization Letters7(1): 5-2210.1007/s11590-011-0389-9
  44. Sabo, K., Scitovski, R., Vazler, I. and Zeki´c-Sušac, M. (2011). Mathematical models of natural gas consumption, EnergyConversion and Management 52(3): 1721-1727.10.1016/j.enconman.2010.10.037
  45. Teboulle, M. (2007). A unified continuous optimization framework for center-based clustering methods, Journal ofMachine Learning Research 8(1): 65-102.
  46. Vardi, Y., Zhang, C. H. (2000). The multivariate L1-median and associated data depth, Proceedings of the NationalAcademy of Sciences, United States of America97(4): 1423-1426.10.1073/pnas.97.4.14232644910677477
  47. Vazler, I., Sabo, K. and Scitovski, R. (2012). Weighted median of the data in solving least absolute deviations problems, Communications in Statistics-Theory and Methods41(8): 1455-1465.10.1080/03610926.2010.539750
  48. Zhang, J., Peng, L., Zhao, X. and Kuruoglu E.E. (2012 ). Robust data clustering by learning multi-metric lq-norm distances, Expert Systems with Applications 39(1): 335-349.10.1016/j.eswa.2011.07.023
DOI: https://doi.org/10.2478/amcs-2014-0012 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 151 - 163
Published on: Mar 25, 2014
Published by: Sciendo
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2014 Kristian Sabo, published by Sciendo
This work is licensed under the Creative Commons License.