Have a personal or library account? Click to login
An algorithm for reducing the dimension and size of a sample for data exploration procedures Cover

An algorithm for reducing the dimension and size of a sample for data exploration procedures

Open Access
|Mar 2014

References

  1. Aarts, E., Korst, J. and van Laarhoven, P. (1997). Simulated annealing, in E. Aarts and J. Lenstra (Eds.), Local Searchin Combinatorial Optimization, Wiley, Chichester, pp. 91-120.
  2. Alba, E. (2005). Parallel Metaheuristics: A New Class of Algorithms, Wiley, New York, NY.10.1002/0471739383
  3. Aswani Kumar, C. and Srinivas, S. (2006). Latent semantic indexing using eigenvalue analysis for efficient information retrieval, International Journal of AppliedMathematicsand Computer Science 16(4): 551-558.
  4. Aswani Kumar, C. (2009). Analysis of unsupervised dimensionality techniques, Computer Science and InformationSystems 6(2): 217-227.10.2298/CSIS0902217K
  5. Azencot, R. (1992). Simulated Annealing: Parallelization Techniques, Wiley, New York, NY.
  6. Bartenhagen, C., Klein, H.-U., Ruckert, C., Jiang, X. and Dugas, M. (2010). Comparative study of unsupervised dimension reduction techniques for the visualization of microarray gene expression data, BMC Bioinformatics 11, paper no. 567.
  7. Bartkuté, V. and Sakalauskas, L. (2009). Statistical inferences for termination of Markov type random search algorithms, Journal of Optimization Theory and Applications141(3): 475-493.10.1007/s10957-008-9502-3
  8. Ben-Ameur, W. (2004). Computing the initial temperature of simulated annealing, Computational Optimization and Applications29(3): 367-383.10.1023/B:COAP.0000044187.23143.bd
  9. Borg, I. and Groenen, P. (2005). Modern Multidimensional Scaling. Theory and Applications, Springer-Verlag, Berlin.
  10. Camastra, F. (2003). Data dimensionality estimation methods: A survey, Pattern Recognition 36(12): 2945-2954. 10.1016/S0031-3203(03)00176-6
  11. Charytanowicz, M., Niewczas, J., Kulczycki, P., Kowalski, P., Łukasik, S. and ˙Zak, S. (2010). Complete gradient clustering algorithm for features analysis of x-ray images, in E. Pia˛tka and J. Kawa (Eds.), Information Technologiesin Biomedicine, Vol. 2, Springer-Verlag, Berlin, pp. 15-24.10.1007/978-3-642-13105-9_2
  12. Cortez, P., Cerdeira, A., Almeida, F., Matos, T. and Reis, J. (2009). Modeling wine preferences by data mining from physicochemical properties, Decision Support Systems47(4): 547-553.10.1016/j.dss.2009.05.016
  13. Cox, T. and Cox, M. (2000). Multidimensional Scaling, Chapman and Hall, Boca Raton, FL.10.1201/9780367801700
  14. Cunningham, P. (2007). Dimension reduction, Technical report, UCD School of Computer Science and Informatics, Dublin.
  15. Czarnowski, I. and J˛edrzejowicz, P. (2011). Application of agent-based simulated annealing and tabu search procedures to solving the data reduction problem, International Journal of Applied Mathematics and ComputerScience 21(1): 57-68, DOI: 10.2478/v10006-011-0004-3.10.2478/v10006-011-0004-3
  16. David, H. and Nagaraja, H. (2003). Order Statistics,Wiley, New York, NY.10.1002/0471722162
  17. Deng, Z., Chung, F.-L. and Wang, S. (2008). FRSDE: Fast reduced set density estimator using minimal enclosing ball approximation, Pattern Recognition 41(4): 1363-1372.10.1016/j.patcog.2007.09.013
  18. François, D., Wertz, V. and Verleysen, M. (2007). The concentration of fractional distances, IEEE Transactionson Knowledge and Data Engineering 19(7): 873-886.10.1109/TKDE.2007.1037
  19. Geman, S. and Geman, D. (1984). Stochastic relaxation, Gibbs distribution and the Bayesian restoration in images, IEEETransactions on Pattern Analysis and Machine Intelligence6: 721-741.10.1109/TPAMI.1984.4767596
  20. Gendreau, M. and Potvin, J.-Y. (2010). Handbook of Metaheuristics, Springer, New York, NY.10.1007/978-1-4419-1665-5
  21. Han, J. and Kamber, M. (2006). Data Mining: Concepts andTechniques, Morgan Kaufmann, San Francisco, CA.
  22. Ingber, L. (1996). Adaptive simulated annealing (ASA): Lessons learned, Control and Cybernetics 25(1): 33-54.
  23. Inza, I., Larranaga, P., Etxeberria, R. and Sierra, B. (2000). Feature subset selection by Bayesian network-based optimization, Artificial Intelligence 123(1-2): 157-184.10.1016/S0004-3702(00)00052-7
  24. Ishibuchi, H., Nakashima, T. and Murata, T. (2001). Three-objective genetics-based machine learning for linguistic rule extraction, Information Sciences136(1-4): 109-133.10.1016/S0020-0255(01)00144-X
  25. Kerdprasop, K., Kerdprasop, N. and Sattayatham, P. (2005). Weighted k-means for density-biased clustering, in A. Tjoa and J. Trujillo (Eds.), Data Warehousing and KnowledgeDiscovery, Lecture Notes in Computer Science, Vol. 3589, Springer-Verlag, Berlin pp. 488-497.10.1007/11546849_48
  26. Kulczycki, P. (2005). Kernel Estimators in System Analysis, WNT, Warsaw, (in Polish). Kulczycki, P. (2008). Kernel estimators in industrial applications, in B. Prasad (Ed.), Soft Computing Applicationsin Industry, Springer-Verlag, Berlin, pp. 69-91.10.1007/978-3-540-77465-5_4
  27. Kulczycki, P. and Charytanowicz, M. (2010). A complete gradient clustering algorithm formed with kernel estimators, International Journal of Applied Mathematicsand Computer Science 20(1): 123-134, DOI: 10.2478/v10006-010-0009-3.10.2478/v10006-010-0009-3
  28. Kulczycki, P. and Kowalski, P. (2011). Bayes classification of imprecise information of interval type, Control and Cybernetics40(1): 101-123.
  29. Kulczycki, P. and Łukasik, S. (2014). Reduction of dimension and size of data set by parallel fast simulated annealing, in L.T. Koczy, C.R. Pozna, R. Claudiu and J. Kacprzyk (Eds.), Issues and Challenges of Intelligent Systems and ComputationalIntelligence, Springer-Verlag, Berlin, pp. 273-292.10.1007/978-3-319-03206-1_19
  30. Kuo, Y. (2010). Using simulated annealing to minimize fuel consumption for the time-dependent vehicle routing problem, Computers & Industrial Engineering59(1): 157-165.10.1016/j.cie.2010.03.012
  31. Łukasik, S. and Kulczycki, P. (2011). An algorithm for sample and data dimensionality reduction using fast simulated annealing, in J. Tang, I. King, L. Chen and J. Wang (Eds.), Advanced Data Mining and Applications, Lecture Notes in Computer Science, Vol. 7120, Springer-Verlag, Berlin, pp. 152-161.10.1007/978-3-642-25853-4_12
  32. Łukasik, S. and Kulczycki, P. (2013). Using topology preservation measures for multidimensional intelligent data analysis in the reduced feature space, in L. Rutkowski, M. Korytkowski, R. Scherer, R. Tadeusiewicz, L. Zadeh and J. Zurada (Eds.), Artificial Intelligence and Soft Computing, Lecture Notes in Computer Science, Vol. 7895, Springer-Verlag, Berlin, pp. 184-193.10.1007/978-3-642-38610-7_18
  33. Maaten, van der, L. (2009). Feature Extraction from Visual Data, Ph.D. thesis, Tilburg University, Tilburg.
  34. Mangasarian, O. and Wolberg, W. (1990). Cancer diagnosis via linear programming, SIAM News 23(5): 1-18.
  35. Mitra, P., Murthy, C. and Pal, S. (2002). Density-based multiscale data condensation, IEEE Transactions on PatternAnalysis and Machine Intelligence 24(6): 734-747.10.1109/TPAMI.2002.1008381
  36. Nam, D., Lee, J.-S. and Park, C. (2004). n-dimensional Cauchy neighbor generation for the fast simulated annealing, IEICE Transactions on Information and Systems E87-D(11): 2499-2502.
  37. Oliveira, J. and Pedrycz, W. (Eds.) (2007). Advances in FuzzyClustering and Its Applications, Wiley, Chichester.
  38. Pal, S. and Mitra, P. (2004). Pattern Recognition Algorithms forData Mining, Chapman and Hall, Boca Raton, FL.10.1201/9780203998076
  39. Parvin, H., Alizadeh, H. and Minati, B. (1971). Objective criteria for the evaluation of clustering methods, Journal of theAmerican Statistical Association 66(336): 846-850.10.1080/01621459.1971.10482356
  40. Parvin, H., Alizadeh, H. and Minati, B. (2010). A modification on k-nearest neighbor classifier, Global Journal of ComputerScience and Technology 10(14): 37-41.
  41. Sait, S. and Youssef, H. (2000). Iterative Computer Algorithmswith Applications in Engineering: Solving CombinatorialOptimization Problems, IEEE Computer Society Press, Los Alamitos, CA.
  42. Sammon, J. (1969). A nonlinear mapping for data structure analysis, IEEE Transactions on Computers18(5): 401-409.10.1109/T-C.1969.222678
  43. Saxena, A., Pal, N. and Vora, M. (2010). Evolutionary methods for unsupervised feature selection using Sammon’s stress function, Fuzzy Information and Engineering2(3): 229-247.10.1007/s12543-010-0047-4
  44. Strickert, M., Teichmann, S., Sreenivasulu, N. and Seiffert, U. (2005). DIPPP online self-improving linear map for distance-preserving data analysis, 5th Workshop on Self-Organizing Maps, WSOM’05, Paris, France, pp. 661-668.
  45. Sumi, S.M., Zaman, M.F. and Hirose, H. (2012). A rainfall forecasting method using machine learning models and its application to the Fukuoka city case, InternationalJournal of Applied Mathematics and Computer Science22(4): 841-854, DOI: 10.2478/v10006-012-0062-1. 10.2478/v10006-012-0062-1
  46. Szu, H. and Hartley, R. (1987). Fast simulated annealing, PhysicsLetters A 122(3-4): 157-162.10.1016/0375-9601(87)90796-1
  47. Tian, T., Wilcox, R. and James, G. (2010). Data reduction in classification: A simulated annealing based projection method, Statistical Analysis and Data Mining3(5): 319-331.10.1002/sam.10087
  48. UC Irvine Machine Learning Repository (2013). http://archive.ics.uci.edu/ml/.
  49. Vanstrum, M. and Starks, S. (1981). An algorithm for optimal linear maps, Southeastcon Conference, Huntsville, AL,USA, pp. 106-110.
  50. Wand, M. and Jones, M. (1995). Kernel Smoothing, Chapman and Hall, London.10.1007/978-1-4899-4493-1
  51. Wilson, D. and Martinez, T. (2000). Reduction techniques for instance-based learning algorithms, Machine Learning38(3): 257-286.10.1023/A:1007626913721
  52. Xu, R. and Wunsch, D. (2009). Clustering,Wiley, Hoboken, NJ.10.1002/9780470382776
  53. Zhigljavsky, A. and Žilinskas, A. (2008). Stochastic GlobalOptimization, Springer-Verlag, Berlin.
DOI: https://doi.org/10.2478/amcs-2014-0011 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 133 - 149
Published on: Mar 25, 2014
Published by: Sciendo
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2014 Piotr Kulczycki, Szymon Lukasik, published by Sciendo
This work is licensed under the Creative Commons License.