Aarts, E., Korst, J. and van Laarhoven, P. (1997). Simulated annealing, in E. Aarts and J. Lenstra (Eds.), Local Searchin Combinatorial Optimization, Wiley, Chichester, pp. 91-120.
Aswani Kumar, C. and Srinivas, S. (2006). Latent semantic indexing using eigenvalue analysis for efficient information retrieval, International Journal of AppliedMathematicsand Computer Science 16(4): 551-558.
Aswani Kumar, C. (2009). Analysis of unsupervised dimensionality techniques, Computer Science and InformationSystems 6(2): 217-227.10.2298/CSIS0902217K
Bartenhagen, C., Klein, H.-U., Ruckert, C., Jiang, X. and Dugas, M. (2010). Comparative study of unsupervised dimension reduction techniques for the visualization of microarray gene expression data, BMC Bioinformatics 11, paper no. 567.
Bartkuté, V. and Sakalauskas, L. (2009). Statistical inferences for termination of Markov type random search algorithms, Journal of Optimization Theory and Applications141(3): 475-493.10.1007/s10957-008-9502-3
Ben-Ameur, W. (2004). Computing the initial temperature of simulated annealing, Computational Optimization and Applications29(3): 367-383.10.1023/B:COAP.0000044187.23143.bd
Charytanowicz, M., Niewczas, J., Kulczycki, P., Kowalski, P., Łukasik, S. and ˙Zak, S. (2010). Complete gradient clustering algorithm for features analysis of x-ray images, in E. Pia˛tka and J. Kawa (Eds.), Information Technologiesin Biomedicine, Vol. 2, Springer-Verlag, Berlin, pp. 15-24.10.1007/978-3-642-13105-9_2
Cortez, P., Cerdeira, A., Almeida, F., Matos, T. and Reis, J. (2009). Modeling wine preferences by data mining from physicochemical properties, Decision Support Systems47(4): 547-553.10.1016/j.dss.2009.05.016
Czarnowski, I. and J˛edrzejowicz, P. (2011). Application of agent-based simulated annealing and tabu search procedures to solving the data reduction problem, International Journal of Applied Mathematics and ComputerScience 21(1): 57-68, DOI: 10.2478/v10006-011-0004-3.10.2478/v10006-011-0004-3
Deng, Z., Chung, F.-L. and Wang, S. (2008). FRSDE: Fast reduced set density estimator using minimal enclosing ball approximation, Pattern Recognition 41(4): 1363-1372.10.1016/j.patcog.2007.09.013
François, D., Wertz, V. and Verleysen, M. (2007). The concentration of fractional distances, IEEE Transactionson Knowledge and Data Engineering 19(7): 873-886.10.1109/TKDE.2007.1037
Geman, S. and Geman, D. (1984). Stochastic relaxation, Gibbs distribution and the Bayesian restoration in images, IEEETransactions on Pattern Analysis and Machine Intelligence6: 721-741.10.1109/TPAMI.1984.4767596
Inza, I., Larranaga, P., Etxeberria, R. and Sierra, B. (2000). Feature subset selection by Bayesian network-based optimization, Artificial Intelligence 123(1-2): 157-184.10.1016/S0004-3702(00)00052-7
Ishibuchi, H., Nakashima, T. and Murata, T. (2001). Three-objective genetics-based machine learning for linguistic rule extraction, Information Sciences136(1-4): 109-133.10.1016/S0020-0255(01)00144-X
Kerdprasop, K., Kerdprasop, N. and Sattayatham, P. (2005). Weighted k-means for density-biased clustering, in A. Tjoa and J. Trujillo (Eds.), Data Warehousing and KnowledgeDiscovery, Lecture Notes in Computer Science, Vol. 3589, Springer-Verlag, Berlin pp. 488-497.10.1007/11546849_48
Kulczycki, P. (2005). Kernel Estimators in System Analysis, WNT, Warsaw, (in Polish). Kulczycki, P. (2008). Kernel estimators in industrial applications, in B. Prasad (Ed.), Soft Computing Applicationsin Industry, Springer-Verlag, Berlin, pp. 69-91.10.1007/978-3-540-77465-5_4
Kulczycki, P. and Charytanowicz, M. (2010). A complete gradient clustering algorithm formed with kernel estimators, International Journal of Applied Mathematicsand Computer Science 20(1): 123-134, DOI: 10.2478/v10006-010-0009-3.10.2478/v10006-010-0009-3
Kulczycki, P. and Łukasik, S. (2014). Reduction of dimension and size of data set by parallel fast simulated annealing, in L.T. Koczy, C.R. Pozna, R. Claudiu and J. Kacprzyk (Eds.), Issues and Challenges of Intelligent Systems and ComputationalIntelligence, Springer-Verlag, Berlin, pp. 273-292.10.1007/978-3-319-03206-1_19
Kuo, Y. (2010). Using simulated annealing to minimize fuel consumption for the time-dependent vehicle routing problem, Computers & Industrial Engineering59(1): 157-165.10.1016/j.cie.2010.03.012
Łukasik, S. and Kulczycki, P. (2011). An algorithm for sample and data dimensionality reduction using fast simulated annealing, in J. Tang, I. King, L. Chen and J. Wang (Eds.), Advanced Data Mining and Applications, Lecture Notes in Computer Science, Vol. 7120, Springer-Verlag, Berlin, pp. 152-161.10.1007/978-3-642-25853-4_12
Łukasik, S. and Kulczycki, P. (2013). Using topology preservation measures for multidimensional intelligent data analysis in the reduced feature space, in L. Rutkowski, M. Korytkowski, R. Scherer, R. Tadeusiewicz, L. Zadeh and J. Zurada (Eds.), Artificial Intelligence and Soft Computing, Lecture Notes in Computer Science, Vol. 7895, Springer-Verlag, Berlin, pp. 184-193.10.1007/978-3-642-38610-7_18
Mitra, P., Murthy, C. and Pal, S. (2002). Density-based multiscale data condensation, IEEE Transactions on PatternAnalysis and Machine Intelligence 24(6): 734-747.10.1109/TPAMI.2002.1008381
Nam, D., Lee, J.-S. and Park, C. (2004). n-dimensional Cauchy neighbor generation for the fast simulated annealing, IEICE Transactions on Information and Systems E87-D(11): 2499-2502.
Parvin, H., Alizadeh, H. and Minati, B. (1971). Objective criteria for the evaluation of clustering methods, Journal of theAmerican Statistical Association 66(336): 846-850.10.1080/01621459.1971.10482356
Parvin, H., Alizadeh, H. and Minati, B. (2010). A modification on k-nearest neighbor classifier, Global Journal of ComputerScience and Technology 10(14): 37-41.
Sait, S. and Youssef, H. (2000). Iterative Computer Algorithmswith Applications in Engineering: Solving CombinatorialOptimization Problems, IEEE Computer Society Press, Los Alamitos, CA.
Saxena, A., Pal, N. and Vora, M. (2010). Evolutionary methods for unsupervised feature selection using Sammon’s stress function, Fuzzy Information and Engineering2(3): 229-247.10.1007/s12543-010-0047-4
Strickert, M., Teichmann, S., Sreenivasulu, N. and Seiffert, U. (2005). DIPPP online self-improving linear map for distance-preserving data analysis, 5th Workshop on Self-Organizing Maps, WSOM’05, Paris, France, pp. 661-668.
Sumi, S.M., Zaman, M.F. and Hirose, H. (2012). A rainfall forecasting method using machine learning models and its application to the Fukuoka city case, InternationalJournal of Applied Mathematics and Computer Science22(4): 841-854, DOI: 10.2478/v10006-012-0062-1.10.2478/v10006-012-0062-1
Tian, T., Wilcox, R. and James, G. (2010). Data reduction in classification: A simulated annealing based projection method, Statistical Analysis and Data Mining3(5): 319-331.10.1002/sam.10087
Wilson, D. and Martinez, T. (2000). Reduction techniques for instance-based learning algorithms, Machine Learning38(3): 257-286.10.1023/A:1007626913721