Have a personal or library account? Click to login
Approximation of a linear dynamic process model using the frequency approach and a non-quadratic measure of the model error Cover

Approximation of a linear dynamic process model using the frequency approach and a non-quadratic measure of the model error

Open Access
|Mar 2014

References

  1. Deschrijver, D., Gustavsen, B. and Dhaene, T. (2007). Advancements in iterative methods for rational approximation in the frequency domain, IEEE Transactionson Power Delivery 22(3): 1633-1642.10.1109/TPWRD.2007.899584
  2. Deschrijver, D., Knockaert, L. and Dhaene, T. (2010). Improving robustness of vector fitting to outliers in data, IEEE ElectronicsLetters 46(17): 1200-1201.10.1049/el.2010.1364
  3. Deschrijver, D., Knockaert, L. and Dhaene, T. (2011). Robust macromodeling of frequency responses with outliers, 15thIEEE Workshop on Signal Propagation on Interconnects(SPI), Naples, Italy, pp. 21-24.
  4. Fiodorov, E. (1994). Least absolute values estimation: Computational aspects, IEEE Transactions on AutomaticControl 39(3): 626-630.10.1109/9.280775
  5. Grivet-Talocia, S., Bandinu, M. and Canavero, F. (2005). An automatic algorithm for equivalent circuit extraction from noisy frequency responses, 2005 International Symposiumon Electromagnetic Compatibility, EMC 2005, Zurich,Switzerland, Vol. 1, pp. 163-168.
  6. Gustavsen, B. (2004). Wide band modeling of power transformers, IEEE Transactions on Power Delivery19(1): 414-422.10.1109/TPWRD.2003.820197
  7. Gustavsen, B. (2006). Relaxed vector fitting algorithm for rational approximation of frequency domain responses, IEEEWorkshop on Signal Propagation on Interconnects,Berlin, Germany, pp. 97-100.
  8. Gustavsen, B. and Mo, O. (2007). Interfacing convolution based linear models to an electromagnetic transients program, Conference on Power Systems Transients, Lyon, France, pp. 4-7.
  9. Gustavsen, B. and Semlyen, A. (1999). Rational approximation of frequency domain responses by vector fitting, IEEETransactions on Power Delivery 14(3): 1052-1061.10.1109/61.772353
  10. Janiszowski, K. (1998). Towards least sum of absolute errors estimation, IFAC Symposium on Large Scale SystemsLSS’98, Patras, Greece, pp. 613-619.
  11. Kowalczuk, Z. and Kozłowski, J. (2011). Non-quadratic quality criteria in parameter estimation of continuous-time models, IET Control Theory & Applications5(13): 1494-1508.10.1049/iet-cta.2010.0310
  12. Kozłowski, J. (2003). Nonquadratic quality indices in estimation, approximation and control, IEEE ConferenceMMAR’2003, Mi˛edzyzdroje, Poland, pp. 277-282.
  13. Levy, E.C. (1959). Complex-curve fitting, IRE Transactions onAutomatic Control AC-4(1): 37-43.10.1109/TAC.1959.6429401
  14. Lima, A.C.S., Fernandes, A. and Carneiro, S., J. (2005). Rational approximation of frequency domain responses in the s and z planes, IEEE Power Engineering Society General Meeting,San Francisco, CA, USA, Vol. 1, pp. 126-131
  15. Ljung, L. and Söderström, T. (1987). Theory and Practice ofRecursive Identification, MIT Press, Cambridge, MA.
  16. Mohan, R., Choi, M.J., Mick, S., Hart, F., Chandrasekar, K., Cangellaris, A., Franzon, P. and Steer, M. (2004). Causal reduced-order modeling of distributed structures in a transient circuit simulator, IEEE Transactions on MicrowaveTheory and Techniques 52(9): 2207-2214.10.1109/TMTT.2004.834588
  17. Pintelon, R. and Schoukens, J. (2004). System Identification:A Frequency Domain Approach, John Wiley & Sons, New York, NY.
  18. Sreeram, V. and Agatokhlis, P. (1991). Model reduction of linear discrete-time systems via impulse response Gramians, InternationalJournal on Control 53(1): 129-144.10.1080/00207179108953613
  19. Unbehauen, H. and Rao, G. (1997). Identification of continuous-time systems: A tutorial, 11th IFAC Symposiumon System Identification, Kitakyushu, Japan, pp. 1023-1049.
  20. Varricchio, S., Gomes, S. and Martins, N. (2004). Modal analysis of industrial system harmonics using the s-domain approach, IEEE Transactions on Power Delivery19(3): 1232-1237. 10.1109/TPWRD.2004.829943
  21. Wahlberg, B. and Mäkilä, P. (1996). On approximation of stable linear dynamical systems using Laguerre and Kautz functions, Automatica 32(5): 693-708.10.1016/0005-1098(95)00198-0
  22. Young, P.C. (1966). Process parameter estimation and self adaptive control, in P.H. Hammnod (Ed.), Theory of SelfAdaptive Control Systems, Vol. 1, Plenum Press, New York, NY, p. 118. 10.1007/978-1-4899-6289-8_14
DOI: https://doi.org/10.2478/amcs-2014-0008 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 99 - 109
Published on: Mar 25, 2014
Published by: University of Zielona Góra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2014 Krzysztof B Janiszowski, published by University of Zielona Góra
This work is licensed under the Creative Commons License.