Have a personal or library account? Click to login
From the slit-island method to the Ising model: Analysis of irregular grayscale objects Cover

From the slit-island method to the Ising model: Analysis of irregular grayscale objects

Open Access
|Mar 2014

References

  1. Adam, R., Silva, R., Pereira, F., Leite, N., Lorand-Metze, I. and Metze, K. (2006). The fractal dimension of nuclear chromatin as a prognostic factor in acute precursor B lymphoblastic leukemia, Cellular Oncology 28(1-2): 55-59.10.1155/2006/409593
  2. Atkinson, P. (2002). Spatial statistics, in A. Stein, F. Van Der Meer and B. Gorte (Eds.), Spatial Statistics for Remote Sensing, Kluwer Academic Publishers, Boston, MA, pp. 57-82.
  3. Barnsley, M., Devaney, R., Mandelbrot, B., Peitgen, H.-O., Saupe, S. and Voss, R. (1988). The Science of Fractal Images, Springer-Verlag, Heidelberg.10.1007/978-1-4612-3784-6
  4. Bedin, V., Adam, R., de Sa, B., Landman, G. and Metze, K. (2010). Fractal dimension of chromatin is an independent prognostic factor for survival in melanoma, BMC Cancer 10(260), 6 pages.10.1186/1471-2407-10-260
  5. Binney, J., Dowrick, N., Fisher, A. and Newman, M. (1992). The Theory of Critical Phenomena. An Introduction to the Renormalization Group, Clarendon Press, Oxford.
  6. Chosia,M. and Domagała,W. (2010). CCervical Cytodiagnosis, Pro Pharmacia Futura, Warsaw, (in Polish).
  7. Cibas, E. and Ducatman, B. (2009). Cytology. Diagnostic Principles and Clinical Correlates, Saunders Elsevier, Philadelphia, PA.
  8. Clarke, K. (1986). Computation of the fractal dimension of topographic surfaces using the triangular prism surface area method, Computer and Geoscience 12(5): 713-722.10.1016/0098-3004(86)90047-6
  9. Costa, L. and Cesar Jr., R. (2009). Shape Classification and Analysis. Theory and Practice, CRC Press, Boca Raton, FL.
  10. Dey, P. and Banik, T. (2012). Fractal dimension of chromatin texture of squamous intraepithelial lesions of cervix, Diagnostic Cytopathology 40(2): 152-154.10.1002/dc.2163122246932
  11. Engler, O. and Randle, V. (2010). Introduction to Texture Analysis: Macrotexture, Microtexture, and Orientation Mapping, CRC Press, Amsterdam.10.1201/9781420063660
  12. Ferro, D., Falconi, M., Adam, R., Ortega, M., Lima, C., de Souza, C., Lorand-Metze, I. and Metze, K. (2011). Fractal characteristics of May-Grünwald-Giemsa stained chromatin are independent prognostic factors for survival in multiple myeloma, PLoS ONE 6(6): 1-8.10.1371/journal.pone.0020706311682921698234
  13. Filipczuk, P.,Wojtak,W. and Obuchowicz, A. (2012). Automatic nuclei detection on cytological images using the firefly optimization algorithm, in E. Pi˛etka and J. Kawa (Eds.), Information Technologies in Biomedicine, Lecture Notes in Computer Science, Vol. 7339, Springer, Heidelberg, pp. 85-92.10.1007/978-3-642-31196-3_9
  14. Geman, S. and McClure, D. (1987). Statistical methods for tomographic image reconstruction, Bulletin of the International Statistical Institute LII(4): 5-21.
  15. Glauber, R. (1963). Time-dependent statistics of the Ising model, Journal of Mathematical Physics A 4(2): 1299-1303.10.1063/1.1703954
  16. Goodchild, M. (1980). Fractals and the accuracy of geographical measures, Mathematical Geology 12(2): 85-98.10.1007/BF01035241
  17. Goutzanis, L., Papadogeorgakis, N., Pavlopoulos, P., Katti, K., Petsinis, V., Plochoras, I., Pantelidaki, C., Kavantzas, N., Patsouris, E. and Alexandridis, C. (2008). Nuclear fractal dimension as a prognostic factor in oral squamous cell carcinoma, Oral Oncology 44(4): 345-353.10.1016/j.oraloncology.2007.04.005
  18. Harte, D. (2001). Multifractals. Theory and Applications, Chapman & Hall/CRC, Boca Raton, FL.10.1201/9781420036008
  19. Hoda, R. and Hoda, S. (2007). Fundamentals of Pap Test Cytology, Humana Press, Totowa.10.1007/978-1-59745-276-2
  20. Hrebień, M., Korbicz, J. and Obuchowicz, A. (2007). Hough transform, (1+1) search strategy and watershed algorithm in segmentation of cytological images, in M. Kurzyński, E. Puchała, M. Woźniak and A. Żołnierek (Eds.), Computer Recognition Systems, Advances in Soft Computing, Vol. 45, Springer, Berlin, pp. 550-557.10.1007/978-3-540-75175-5_69
  21. Hrebień, M., Ste´c, P., Nieczkowski, T. and Obuchowicz, A. (2008). Segmentation of breast cancer fine needle biopsy cytological images, International Journal of Applied Mathematics and Computer Science 18(2): 159-170, DOI: 10.2478/v10006-008-0015-x.10.2478/v10006-008-0015-x
  22. Huang, Z., Tian, J. andWang, Z. (1990). A study of the slit island analysis as a method for measuring fractal dimension of fractured surface, Scripta Metall Mater 24(6): 967-972.10.1016/0956-716X(90)90284-N
  23. Jeleń, L., Fevens, T. and Krzyżak, A. (2008). Classification of breast cancer malignancy using cytological images of fine needle aspiration biopsies, International Journal of Applied Mathematics and Computer Science 18(1): 75-83, DOI: 10.2478/v10006-008-0007-x.10.2478/v10006-008-0007-x
  24. Kaye, B. (1994). A Random Walk through Fractal Dimensions, VCH, Weinham/New York, NY.10.1002/9783527615995
  25. Kowal, M., Filipczuk, P., Marciniak, A. and Obuchowicz, A. (2013). Swarm optimization and multi-level thresholding of cytological images for breast cancer diagnosis, in R. Burduk, K. Jackowski, M. Kurzyński, M. Woźniak and A. Żołnierek (Eds.), CORES 2013, Advances in Intelligent Systems and Computing, Vol. 226, Springer-Verlag, Heidelberg, pp. 611-620. 10.1007/978-3-319-00969-8_60
  26. Kuehnel, W. (2003). Color Atlas of Cytology, Histology, and Microscopic Anatomy, Thieme, New York, NY.10.1055/b-005-148882
  27. Loncaric, A. (1998). A survey of shape analysis techniques, Pattern Recognition 31(8): 983-1001.10.1016/S0031-2023(97)00122-2
  28. Lu, C. (1995). On the validity of the slit islands analysis in the measure of fractal dimension of fracture surfaces, International Journal of Fracture 69(4): 77-80.10.1007/BF00037390
  29. Mandelbrot, B. (1983). The Fractal Geometry of the Nature, W.H. Freeman and Company, New York, NY.10.1119/1.13295
  30. Mandelbrot, B., Passoja, D. and Paullay, A. (1984). Fractal character of fracture surfaces of metals, Nature 308: 721-722.10.1038/308721a0
  31. McKenna, S. (1994). Automated Analysis of Papanicolaou Smears, Ph.D. thesis, University of Dundee, Dundee.
  32. Metze, K. (2010). Fractal dimension of chromatin and cancer prognosis, Epigenomics 2(5): 601-604.10.2217/epi.10.5022122044
  33. Metze, K. (2013). Fractal dimension of chromatin: Potential molecular diagnostic applications for cancer prognosis, Expert Review of Molecular Diagnostics 13(7): 719-735.10.1586/14737159.2013.828889382137824063399
  34. Mingqiang, Y., Kidiyo, K. and Ronsin, J. (2008). A survey of shape feature extraction techniques, in P.-Y. Yin (Ed.), Pattern Recognition Techniques, Technology and Applications, InTech, Rijeka, pp. 43-90.10.5772/6237
  35. Nielsen, B., Albregtsen, F. and Danielsen, H. (2005). Fractal analysis of monolayer cell nuclei from two different prognostic classes of early ovarian cancer, in G.A. Losa, D. Merlini, T.F. Nonnenmacher and E.R.Weibel (Eds.), Fractals in Biology and Medicine, Vol. 4, Birkhäuser, Boston, MA, pp. 175-186.10.1007/3-7643-7412-8_16
  36. Obuchowicz, A., Hrebień, M., Nieczkowski, T. and Marciniak, A. (2008). Computational intelligence techniques in image segmentation for cytopathology, in T.G. Smoliński, M.G. Milanova and A.-E. Hassanien (Eds.), Computational Intelligence in Biomedicine and Bioinformatics, Studies in Computational Intelligence, Vol. 151, Springer, Berlin, pp. 169-199.10.1007/978-3-540-70778-3_7
  37. Oszutowska, D. and Purczyński, J. (2012). Estimation of the fractal dimension using tiled triangular prism method for biological non-rectangular objects, Electrical Review R.88 (10b): 261-263.
  38. Oszutowska-Mazurek, D. (2013). Parameter Estimation of Microscopic Objects Using Algorithms of Digital Image Processing for the Purpose of Cytomorphometry, Ph.D. thesis, West-Pomeranian University of Technology, Szczecin, (in Polish).
  39. Oszutowska-Mazurek, D. and Mazurek, P. (2012). Analysis of influence of cell nuclei segmentation in Papanicolaou smears on fractal dimension measurements, Measurement Automation and Monitoring 58(6): 498-501, (in Polish).
  40. Oszutowska-Mazurek, D., Mazurek, P., Sycz, K. and Wójciuk, G.-W. (2012). Estimation of fractal dimension according to optical density of cell nuclei in Papanicolaou smears, in E. Piètka and J. Kawa (Eds.), Information Technologies in Biomedicine, Lecture Notes in Computer Science, Vol. 7339, Springer, Heidelberg, pp. 456-463. 10.1007/978-3-642-31196-3_46
  41. Oszutowska-Mazurek, D., Mazurek, P., Sycz, K. and Wójciuk, G.-W. (2013). Variogram based estimator of fractal dimension for the analysis of cell nuclei from the Papanicolaou smears, in R.S. Chora´s (Ed.), Image Processing and Communications Challenges 4, Advances in Intelligent Systems and Computing, Springer-Verlag, Heidelberg, pp. 47-54.10.1007/978-3-642-32384-3_7
  42. Parker, J. (1997). Algorithms for Image Processing and Computer Vision, Wiley, Indianapolis, IN.
  43. Peitgen, H., Jürgens, H. and Saupe, D. (1991). Fractals for the Classrooms, Vol. 1, Springer-Verlag, Heidelberg.
  44. Peitgen, H., Jürgens, H. and Saupe, D. (1992). Fractals for the Classrooms, Vol. 2, Springer-Verlag, Heidelberg.
  45. Sawaya, G. and Sox, H. (2007). Trials that matter: Liquid-based cervical cytology: Disadvantages seem to outweigh advantages, Annals Internal Medicine 147(9): 668-669.10.7326/0003-4819-147-9-200711060-0001217975190
  46. Sedivy, R., Windischberger, C., Svozil, K., Moser, E. and Breitenecker, G. (1999). Fractal analysis: An objective method for identifying atypical nuclei in dysplastic lesions of the cervix uteri, Gynecologic Oncology 75: 78-83.10.1006/gyno.1999.551610502430
  47. Seuront, L. (2010). Fractals and Multifractals in Ecology and Aquatic Science, CRC Press, Boca Raton, FL.10.1201/9781420004243
  48. Skomski, R. (2008). Simple Models of Magnetism, Oxford University Press, Oxford.10.1093/acprof:oso/9780198570752.001.0001
  49. Smereka, M. and Dulèba, I. (2008). Circular object detection using a modified Hough transform, International Journal of Applied Mathematics and Computer Science 18(1): 85-91, DOI: 10.2478/v10006-008-0008-9. ´10.2478/v10006-008-0008-9
  50. Smietański, J., Tadeusiewicz, R. and Łuczyńska, E. (2010). Texture analysis in perfusion images of prostate cancer-A case study, International Journal of Applied Mathematics and Computer Science 20(1): 149-156, DOI: 10.2478/v10006-010-0011-9.10.2478/v10006-010-0011-9
  51. Solomon, D. and Nayar, R. (2004). The Bethesda System for Reporting Cervical Cytology, Springer, New York, NY.10.1007/978-1-4612-2042-8
  52. Steven, I. (1993). Linear Richardson plots from non-fractal data sets, Dutch Mathematical Geology 25(6): 737-751.10.1007/BF00893176
  53. Styer, D. (2007). Statistical Mechanics, Oberlin College, Oberlin.
  54. Sun, W. (2006). Three new implementations of the triangular prism method for computing the fractal dimension of remote sensing images, Photogrammetric Engineering & Remote Sensing 72(4): 372-382.10.14358/PERS.72.4.373
  55. Sykes, P., Harker, D.,Miller, A.,Whitehead,M., Neal, H.,Wells, J. and Peddied, D. (2008). A randomised comparison of SurePath liquid-based cytology and conventional smear cytology in a colposcopy clinic setting, General Gynaecology 115(11): 1375-1381. 10.1111/j.1471-0528.2008.01865.x18823488
  56. Voss, R. (1988). Fractals in nature: From characterization to simulation, in H.-O. Peitgen and D. Saupe (Eds.), The Science of Fractal Images, Springer-Verlag, Heidelberg, pp. 21-70.10.1007/978-1-4612-3784-6_1
  57. Walker, R. (1997). Adaptive Multi-Scale Texture Analysis with Applications to Automated Cytology, Ph.D. thesis, University of Queensland, Brisbane.
  58. Wen, R. and Sinding-Larsen, R. (1997). Uncertainty in fractal dimension estimated from power spectra and variogram, Mathematical Geology 29(6): 727-753.10.1007/BF02768900
  59. Zhou, G. and Lam, N.-N. (2005). A comparison of fractal dimension estimators based on multiple surface generation algorithms, Computers & Geosciences 31(10): 1260-1269.10.1016/j.cageo.2005.03.016
  60. Zieliński, K. and Strzelecki, M. (2002). Computer Biomedical Image Analysis. Introduction to Morphometry and Quantitative Pathology, PWN,Warsaw, (in Polish).
DOI: https://doi.org/10.2478/amcs-2014-0004 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 49 - 63
Published on: Mar 25, 2014
Published by: University of Zielona Góra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2014 Przemysław Mazurek, Dorota Oszutowsk A-M Ażurek, published by University of Zielona Góra
This work is licensed under the Creative Commons License.