Have a personal or library account? Click to login
Nuclei segmentation for computer-aided diagnosis of breast cancer Cover
By: Marek Kowal and  Paweł Filipczuk  
Open Access
|Mar 2014

References

  1. Al-Kofahi, Y., Lassoued, W., Lee, W. and Roysam, B. (2010). Improved automatic detection and segmentation of cell nuclei in histopathology images, IEEE Transactions on Biomedcial Engineering 57(4): 841-852.10.1109/TBME.2009.203510219884070
  2. Alvarez Menendez, L., de Cos Juez, F., Sanchez Lasheras, F. and Alvarez Riesgo, J. (2010). Artificial neural networks applied to cancer detection in a breast screening programme, Mathematical and Computer Modelling 52(7-8): 983-991.10.1016/j.mcm.2010.03.019
  3. Bandyopadhyay, S.K., Maitra, I.K. and Banerjee, S. (2010). Digital imaging in pathology towards detection and analysis of human breast cancer, 2nd International Conference on Computational Intelligence, Communication Systems and Networks, Liverpool, UK, pp. 295-300.
  4. Basavanhally, A., Ganesan, S., Feldman, M., Shih, N., Mies, C., Tomaszewski, J. and Madabhushi, A. (2013). Multifield- of-view framework for distinguishing tumor grade in ER+ breast cancer from entire histopathology slides, IEEE Transactions on Biomedical Engineering 60(8): 2089-2099.10.1109/TBME.2013.2245129577845123392336
  5. Birdwell, R.L., Bandodkar, P. and Ikeda, D.M. (2005). Computer-aided detection with screening mammography in a university hospital setting, Radiology 236(2): 451-457.10.1148/radiol.236204086416040901
  6. Bishop, C. (2006). Pattern Recognition and Machine Learning, Springer, New York, NY.
  7. Boryczka, U. (2009). Finding groups in data: Cluster analysis with ants, Applied Soft Computing 9(1): 61-70.10.1016/j.asoc.2008.03.002
  8. Boryczka, U. and Kozak, J. (2010). Ant colony decision trees-a new method for constructing decision trees based on ant colony optimization, in J-S. Pan, S-M. Chen and N.T. Nguyen (Eds.), Computational Collective Intelligence. Technologies and Applications, Lecture Notes in Computer Science, Vol. 6421, Springer-Verlag, Berlin/ Heidelberg, pp. 373-382.10.1007/978-3-642-16693-8_39
  9. Bray, F., Ren, J., Masuyer, E. and Ferlay, J. (2012). Estimates of global cancer prevalence for 27 sites in the adult population in 2008, International Journal of Cancer, DOI: 10.1002/ijc.27711.10.1002/ijc.2771122752881
  10. Breiman, L., Friedman, J., Olshen, R. and Stone, C. (1984). Classification and Regression Trees, Wadsworth & Brooks/ Cole Advanced Books & Software, Monterey, CA.
  11. Butler, S.A., Gabbay, R.J., Kass, D.A., Siedler, D.E., O’Shaughnessy, K.F. and Castellino, R.A. (2004). Computer-aided detection in diagnostic mammography: Detection of clinically unsuspected cancers, American Journal of Roentgenology 183(5): 1511-1515.10.2214/ajr.183.5.183151115505329
  12. Cheng, H.D., Shan, J., Ju, W., Guo, Y. and Zhang, L. (2010). Automated breast cancer detection and classification using ultrasound images: A survey, Pattern Recognition 43(1): 299-317.10.1016/j.patcog.2009.05.012
  13. Christel, D., Rojob, M.G., Klossac, J., Mead, V.D., Bookere, D., Beckwithf, B.A. and Schraderg, T. (2011). Standardizing the use of whole slide images in digital pathology, Computerized Medical Imaging and Graphics 35(7-8): 496-505.10.1016/j.compmedimag.2010.12.00421242058
  14. Clocksin, W. F. (2003). Automatic segmentation of overlapping nuclei with high background variation using robust estimation and flexible contour models, 12th International Conference Image Analysis and Processing, ICIAP’03, Mantova, Italy, pp. 682-687.
  15. Cloppet, F. and Boucher, A. (2008). Segmentation of overlapping/ aggregating nuclei cells in biological images, 19th International Conference on Pattern Recognition, ICPR 2008, Tampa, FL, USA, pp. 1-4.
  16. Cortes, C. and Vapnik, V. (1995). Support-vector networks, Machine Learning 20(3): 273-297.10.1007/BF00994018
  17. Cover, T. and Hart, P. (1967). Nearest neighbor pattern classification, IEEE Transactions on Information Theory 13(1): 21-27.10.1109/TIT.1967.1053964
  18. Cruz-Ramirez, N., Acosta-Mesa, H.-G., Carrillo-Calvet, H. and Barrientos-Martinez, R.-E. (2009). Discovering interobserver variability in the cytodiagnosis of breast cancer using decision trees and Bayesian networks, Applied Soft Computing 9(4): 1331-1342.10.1016/j.asoc.2009.05.004
  19. Cupples, T.E., Cunningham, J.E. and Reynolds, J.C. (2004). Impact of computer-aided detection in a regional screening mammography program, American Journal of Roentgenology 185(4): 944-950.10.2214/AJR.04.130016177413
  20. Dean, J.C. and Ilvento, C.C. (2006). Improved cancer detection using computer-aided detection with diagnostic and screening mammography: Prospective study of 104 cancers, American Journal of Roentgenology 187(1): 20-28.10.2214/AJR.05.011116794150
  21. Destounis, S.V.,DiNitto, P., Logan-Young,W., Bonaccio, E., Zuley, M.L. and Willison, K. M. (2004). Can computer-aided detection with double reading of screening mammograms help decrease the false-negative rate? Initial experience, Radiology 232(2): 578-584.10.1148/radiol.232203003415229350
  22. Devijver, P. and Kittler, J. (1982). Pattern Recognition: A Statistical Approach, Prentice-Hall, London.
  23. Doi, K. (2005). Current status and future potential of computeraided diagnosis in medical imaging, British Journal of Radiology 78(1): s3-s19.10.1259/bjr/8293334315917443
  24. Duda, R., Hart, P. and Stork, D. (2001). Pattern Classification, 2nd Edn, Wiley-Interscience, New York, NY.
  25. Eadie, L.H., Taylor, P. and Gibson, A.P. (2012). A systematic review of computer-assisted diagnosis in diagnostic cancer imaging, European Journal of Radiology 81(1): e70-e76.10.1016/j.ejrad.2011.01.09821345631
  26. Fabregue, M., Bringay, S., Poncelet, P., Teisseire, M. and Orsetti, B. (2011). Mining microarray data to predict the histological grade of a breast cancer, Journal of Biomedical Informatics 44(Supp. 1): S12-S16.
  27. Fatakdawala, H., Xu, J., Basavanhally, A., Bhanot, G., Ganesan, S., Feldman, M., Tomaszewski, J.E. and Madabhushi, A. (2010). Expectation maximization-driven geodesic active contour with overlap resolution (EMaGACOR): Application to lymphocyte segmentation on breast cancer histopathology, IEEE Transactions on Biomedical Engineering 57(7): 1676-1689.10.1109/TBME.2010.204123220172780
  28. Ferlay, J., Shin, H., Bray, F., Forman, D., Mathers, C. and Parkin, D. (2010). Globocan 2008 v2.0, Cancer incidence and mortality worldwide: IARC cancerbase no. 10, http://globocan.iarc.fr.
  29. Filipczuk, P., Kowal, M. and Obuchowicz, A. (2011a). Automatic breast cancer diagnostics based on k-means clustering and adaptive thresholding hybrid segmentation, in R.S. Chora´s (Ed.), Image Processing and Communications Challenges 3, Advances in Intelligent and Soft Computing, Vol. 102, Springer-Verlag, Berlin/Heidelberg, pp. 295-303.10.1007/978-3-642-23154-4_33
  30. Filipczuk, P., Kowal, M. and Obuchowicz, A. (2011b). Fuzzy clustering and adaptive thresholding based segmentation method for breast cancer diagnosis, in R. Burduk, M. Kurzy ´nski, M. Wo´zniak and A. ˙Zołnierek (Eds.), Computer Recognition Systems 4, Advances in Intelligent and Soft Computing, Vol. 95, Springer-Verlag, Berlin/Heidelberg, pp. 613-622.10.1007/978-3-642-20320-6_64
  31. Fuchsa, T.J. and Buhmanna, J.M. (2011). Computational pathology: Challenges and promises for tissue analysis, Computerized Medical Imaging and Graphics 35(7): 515-530.10.1016/j.compmedimag.2011.02.00621481567
  32. Ganesan, K., Acharya, U.R., Chua, C.K., Min, L.C., Abraham, K.T. and Ng, K. (2013). Computer-aided breast cancer detection using mammograms: A review, IEEE Reviews in Biomedical Engineering 6(8): 77-98.10.1109/RBME.2012.223228923247864
  33. Giansanti, D., Grigioni,M., D’Avenio, G.,Morelli, S.,Maccioni, G., Bondi, A. and Giovagnoli, M.R. (2010). Virtual microscopy and digital cytology: State of the art, Ann Ist Super Sanita 46(2): 115-122.
  34. Giger, M.L. (2004). Computerized analysis of images in the detection and diagnosis of breast cancer, Seminars in Ultrasound, CT, and MRI 25(4): 411-418.10.1053/j.sult.2004.07.00315559124
  35. Gocławski, J., Sekulska-Nalewajko, J. and Ku´zniak, E. (2012). Neural network segmentation of images from stained cucurbits leaves with colour symptoms of biotic and abiotic stresses, International Journal of AppliedMathematics and Computer Science 22(3): 669-684, DOI: 10.2478/v10006-012-0050-5.10.2478/v10006-012-0050-5
  36. Grzegorczyk, T.M., Meaney, P.M., Kaufman, P.A., di Florio- Alexander, R.M. and Paulsen, K.D. (2012). Fast 3-D tomographic microwave imaging for breast cancer detection, IEEE Transactions on Medical Imaging 31(8): 1584-1592.10.1109/TMI.2012.2197218376637122562726
  37. Gurcan, M.N., Boucheron, L.E., Can, A., Madabhushi, A., Rajpoot, N.M. and Yener, B. (2009). Histopathological image analysis: A review, IEEE Reviews in Biomedical Engineering 2: 147-171.10.1109/RBME.2009.2034865291093220671804
  38. Haralick, R., Shanmugam, K. and Dinstein, I. (1973). Textural features for image classification, IEEE Transactions on Systems, Man, and Cybernetics 3(6): 610-621.10.1109/TSMC.1973.4309314
  39. Hartigan, J.A. and Wong, M.A. (2001). Algorithm as 136: A k-means clustering algorithm, Journal of the Royal Statistical Society, Series C (Applied Statistics) 28(1): 100-108.10.2307/2346830
  40. Hassan, M.R., Hossain, M.M., Begg, R.K., Ramamohanarao, K. and Morsi, Y. (2010). Breast-cancer identification using HMM-fuzzy approach, Computers in Biology and Medicine 40(3): 240-251.10.1016/j.compbiomed.2009.11.00320152962
  41. Jeleń, L., Fevens, T. and Krzy˙zak, A. (2010). Classification of breast cancer malignancy using cytological images of fine needle aspiration biopsies, International Journal of Applied Mathematics and Computer Science 18(1): 75-83, DOI: 10.2478/v10006-008-0007-x. 10.2478/v10006-008-0007-x
  42. Kirshin, E., Oreshkin, B., Zhu, G. K., Popovic, M. and Coates, M. (2013). Microwave radar and microwave-induced thermoacoustics: Dual-modality approach for breast cancer detection, IEEE Transactions on Biomedical Engineering 60(2): 354-360.10.1109/TBME.2012.222076823193227
  43. Kowal, M., Filipczuk, P. and Korbicz, J. (2011a). Hybrid cytological image segmentation method based on competitive neural network and adaptive thresholding, Pomiary, Automatyka, Kontrola 57(11): 1448-1451.
  44. Kowal, M., Filipczuk, P., Obuchowicz, A. and Korbicz, J. (2011b). Computer-aided diagnosis of breast cancer using Gaussian mixture cytological image segmentation, Journal of Medical Informatics & Technologies 17: 257-262.
  45. Kowal, M. and Korbicz, J. (2010). Segmentation of breast cancer fine needle biopsy cytological images using fuzzy clustering, in J. Kornacki, Z. Ra´s, S.Wierzcho´n and J. Kacprzyk (Eds.), Advances in Machine Learning I, Springer-Verlag, Berlin/Heidelberg, pp. 405-417.10.1007/978-3-642-05177-7_20
  46. Krawczyk, B., Filipczuk, P. and Wo´zniak, M. (2012). Adaptive splitting and selection algorithm for classification of breast cytology images, in N.T. Nguyen, K. Hoang and P. J˛edrzejowicz (Eds.), Computational Collective Intelligence. Technologies and Applications, Lecture Notes in Computer Science, Vol. 7653, Springer-Verlag, Berlin/Heidelberg, pp. 475-484.10.1007/978-3-642-34630-9_49
  47. Li, X.-Z., Williams, S. and Bottema, M.J. (2013). Background intensity independent texture features for assessing breast cancer risk in screening mammograms, Pattern Recognition Letters 34(9): 1053-1062.10.1016/j.patrec.2013.01.031
  48. Lloyd, S.P. (1982). Least squares quantization in PCM, IEEE Transactions on Information Theory 28(2): 129-137.10.1109/TIT.1982.1056489
  49. Lopez, A., Graham, A.R., Barker, G.P., Richter, L.C., Krupinski, E.A., Lian, F., Lauren L. Grasso, L.L.,Miller, A., Kreykes, L.N. and Henderson, J.T. (2009). Virtual slide telepathology enables an innovative telehealth rapid breast care clinic, Human Pathology 40(8): 1082-1091.10.1016/j.humpath.2009.04.00519552938
  50. Malek, J., Sebri, A., Mabrouk, S., Torki, K. and Tourki, R. (2009). Automated breast cancer diagnosis based on GVFSnake segmentation, wavelet features extraction and fuzzy classification, Journal of Signal Processing Systems 55(1-3): 49-66.10.1007/s11265-008-0198-2
  51. Malladi, R. and Sethian, J. (1996). Level set and fast marching methods in image processing and computer vision, Proceedings of the IEEE International Conference on Image Processing, Lausanne, Switzerland, pp. 489-492.
  52. Marciniak, A., Obuchowicz, A., Monczak, A. and Kołodzi´nski, M. (2005). Cytomorphometry of fine needle biopsy material from the breast cancer, in M. Kurzy´nski, E. Puchała and M. Wo´zniak and A. ˙Zołnierek (Eds.), Computer Recognition Systems, Advances in Soft Computing, Vol. 30, Springer-Verlag, Berlin/Heidelberg, pp. 603-609.10.1007/3-540-32390-2_71
  53. Mat-Isa, N.A., Subramaniam, E., Mashor, M.Y. and Othman, N.H. (2007). Fine needle aspiration cytology evaluation for classifying breast cancer using artificial neural network, Signal Processing 4(12): 999-1008. 10.3844/ajassp.2007.999.1008
  54. Moghbel, M. and Mashohor, S. (2013). Automated breast cancer detection and classification using ultrasound images: A survey, Artificial Intelligence Review 39(4): 305-313.10.1007/s10462-011-9274-2
  55. Mohanty, A.K., Senapati, M.R. and Lenka, S.K. (2013). An improved data mining technique for classification and detection of breast cancer from mammograms, Neural Computing and Applications 22(Supp. 1): S303-S310.
  56. Moon, W.K., Shen, Y.W., Huang, C.S. and Chiang, L.R. (2011). Computer-aided diagnosis for the classification of breast masses in automated whole breast ultrasound images, Ultrasound in Medicine & Biology 37(4): 539-548.10.1016/j.ultrasmedbio.2011.01.00621420580
  57. Morton, M.J., Whaley, D.H., Brandt, K.R. and Amrami, K.K. (2006). Screening mammograms: Interpretation with computer-aided detection prospective evaluation, Radiology 239(2): 357-383.10.1148/radiol.239204212116569779
  58. Muniandy, S.V. and Stanslas, J. (2008). Modelling of chromatin morphologies in breast cancer cells undergoing apoptosis using generalized Cauchy field, Computerized Medical Imaging and Graphics 32(7): 631-637.10.1016/j.compmedimag.2008.07.00318707844
  59. National Cancer Registry in Poland (2012). http://85.128.14.124/krn.
  60. Nikolova, N.K. (2011). Microwave imaging for breast cancer, IEEE Microwave Magazine 12(7): 78-94.10.1109/MMM.2011.942702
  61. Niwas, S.I., Palanisamy, P., Sujathan, K. and Bengtsson, E. (2013). Analysis of nuclei textures of fine needle aspirated cytology images for breast cancer diagnosis using complex Daubechies wavelets, Signal Processing 93(10): 2828-2837.10.1016/j.sigpro.2012.06.029
  62. Nixon, M. and Aguado, A. (2012). Feature Extraction & Image Processing for Computer Vision, 3rd Edn., Academic Press, London.
  63. Obuchowicz, A., Hrebie´n, M., Nieczkowski, T. and Marciniak, A. (2008). Computational intelligence techniques in image segmentation for cytopathology, in T.G. Smoli´nski, M.G. Milanova and A.-G. Hassanien (Eds.), Computational Intelligence in Biomedicine and Bioinformatics, Springer- Verlag, Berlin, pp. 169-199.10.1007/978-3-540-70778-3_7
  64. Polat, K. and Gunes, S. (2007). Breast cancer diagnosis using least square support vector machine, Digital Signal Processing 17(4): 694-701.10.1016/j.dsp.2006.10.008
  65. Sethian, J. (1996). A fast marching level set method for monotonically advancing fronts, Proceedings of the National Academy of Sciences of the United States of America 93(4): 1591-1595. 10.1073/pnas.93.4.15913998611607632
  66. Sezgin, M. and Sankur, B. (2003). Survey over image thresholding techniques and quantitative performance evaluation, Journal of Electronic Imaging 13(1): 146--165.10.1117/1.1631315
  67. Sifakis, E. and Tziritas, G. (2001). Moving object localisation using a multi-label fast marching algorithm, Signal Processing: Image Communication 16(10): 963-976. ´Smieta´nski, J., Tadeusiewicz, R. and Łuczy´nska, E. (2010). Texture analysis in perfusion images of prostate cancer- A case study, International Journal of Applied Mathematics and Computer Science 20(1): 149-156, DOI: 10.2478/v10006-010-0011-9.10.2478/v10006-010-0011-9
  68. Steć, P. (2005). Segmentation of Colour Video Sequences Using the Fast Marching Method, University of Zielona Góra Press, Zielona Góra.
  69. Tang, X. (1998). Texture information in run-length matrices, IEEE Transactions on Image Processing 7(11): 1602-1609.10.1109/83.72536718276225
  70. Ubeyli, E.D. (2007). Implementing automated diagnostic systems for breast cancer detection, Expert Systems with Applications 33(4): 1054-1062.10.1016/j.eswa.2006.08.005
  71. Underwood, J.C.E. (1987). Introduction to Biopsy Interpretation and Surgical Pathology, Springer-Verlag, London.10.1007/978-1-4471-1473-4
  72. Verma, B., McLeod, P. and Klevansky, A. (2010). Classification of benign and malignant patterns in digital mammograms for the diagnosis of breast cancer, Expert Systems With Applications 37(4): 3344-3351.10.1016/j.eswa.2009.10.016
  73. Woźniak, M. and Krawczyk, B. (2012). Combined classifier based on feature space partitioning, International Journal of Applied Mathematics and Computer Science 22(4): 855-866, DOI: 10.2478/v10006-012-0063-0.10.2478/v10006-012-0063-0
  74. Xiong, X., Kim, Y., Baek, Y., Rhee, D. W. and Kim, S.-H. (2005). Analysis of breast cancer using data mining & statistical techniques, 6th International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing/1st ACIS International Workshop on Self-Assembling Wireless Networks, Towson, MD, USA, pp. 82-87.
  75. Xu, M., Thulasiraman, P. and Noghanian, S. (2012). Microwave tomography for breast cancer detection on cell broadband engine processors, Journal of Parallel and Distributed Computing 72(9): 1106-1116.10.1016/j.jpdc.2011.10.013
  76. Yang, X., Li, H. and Zhou, X. (2006). Nuclei segmentation using marker-controlled watershed, tracking using meanshift, and Kalman filter in time-lapse microscopy, IEEE Transactions on Circuits and Systems I 53(11): 2405-2414.10.1109/TCSI.2006.884469
  77. Yasmeen, M.G., Bassant, M.B., Hala, H.Z. and Mohamed, I.R. (2013). Automated cell nuclei segmentation for breast fine needle aspiration cytology, Signal Processing 93(10): 2804-2816. 10.1016/j.sigpro.2012.07.034
DOI: https://doi.org/10.2478/amcs-2014-0002 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 19 - 31
Published on: Mar 25, 2014
Published by: University of Zielona Góra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2014 Marek Kowal, Paweł Filipczuk, published by University of Zielona Góra
This work is licensed under the Creative Commons License.