Have a personal or library account? Click to login
Graphics processing units in acceleration of bandwidth selection for kernel density estimation Cover

Graphics processing units in acceleration of bandwidth selection for kernel density estimation

Open Access
|Dec 2013

References

  1. Andrzejewski, W., Gramacki, A. and Gramacki, J. (2013). Density estimations for approximate query processing on SIMD architectures, Technical Report RA 03/13, Pozna´n University of Technology, Poznan.
  2. Blohsfeld, B., Korus, D. and Seeger, B. (1999). A comparison of selectivity estimators for range queries on metric attributes, Proceedings of the 1999 ACM SIGMOD International Conference on Management of Data, Philadelphia, PA, USA, pp. 239-250.
  3. Bochkanov, S. and Bystritsky, V. (2013). ALGLIB, http://www.alglib.net.
  4. Chapman, B., Jost, G. and van der Pas, R. (2007). Using OpenMP: Portable Shared Memory Parallel Programming (Scientific and Engineering Computation), MIT Press, Cambridge, MA.
  5. Duong, T. (2004). Bandwidth Selectors for Multivariate Kernel Density Estimation, Ph.D. thesis, University ofWestern Australia, Perth.
  6. Farooqui, N., Kerr, A., Diamos, G., Yalamanchili, S. and Schwan, K. (2011). A framework for dynamically instrumenting GPU compute applications within GPU Ocelot, Proceedings of the 4th Workshop on General Purpose Processing on Graphics Processing Units, GPGPU-4, Newport Beach, CA, USA, pp. 9:1-9:9.
  7. Gramacki, A., Gramacki, J. and Andrzejewski, W. (2010). Probability density functions for calculating approximate aggregates, Foundations of Computing and Decision Sciences 35(4): 223-240.
  8. Greengard, L. and Strain, J. (1991). The fast Gauss transform, SIAM Journal on Scientific and Statistical Computing 12(1): 79-94.10.1137/0912004
  9. Harris, M. (2007). Optimizing parallel reduction in CUDA, http://developer.download.nvidia.com/assets/cuda/files/reduction.pdf.
  10. Hendriks, H. and Kim, P. (2003). Consistent and efficient density estimation, in V. Kumar, M.L. Gavrilova, C.J.K. Tan and P. L’Ecuyer (Eds.), Proceedings of the 200310.1007/3-540-44839-X_42
  11. International Conference on Computational Science and Its Applications, ICCSA 2003: Part I, Lecture Notes in Computer Science, Vol. 2667, Springer-Verlag, New York, NY, Berlin/Heidelberg, pp. 388-397.
  12. Johnson, N., Kotz, S. and Balakrishnan, N. (1994). Continuous Univariate Distributions, Volume 1, Probability and Statistics, John Wiley & Sons, Inc, New York, NY.
  13. Johnson, N., Kotz, S. and Balakrishnan, N. (1995). Continuous Univariate Distributions, Volume 2, Probability and Statistics, John Wiley & Sons, Inc, New York, NY.
  14. Kulczycki, P. (2005). Kernel Estimators in Systems Analysis, Wydawnictwa Naukowo-Techniczne, Warsaw, (in Polish).
  15. Kulczycki, P. (2008). Kernel estimators in industrial applications, in B. Prasad (Ed.), Studies in Fuzziness and Soft Computing. Soft Computing Applications in Industry, Springer-Verlag, Berlin, pp. 69-91.10.1007/978-3-540-77465-5_4
  16. Kulczycki, P. and Charytanowicz, M. (2010). A complete gradient clustering algorithm formed with kernel estimators, International Journal of Applied Mathematics and Computer Science 20(1): 123-134, DOI: 10.2478/v10006-010-0009-3.10.2478/v10006-010-0009-3
  17. Li, Q. and Racine, J. (2007). Nonparametric Econometrics: Theory and Practice, Princeton University Press, Princeton, NJ.
  18. Łukasik, S. (2007). Parallel computing of kernel density estimates with MPI, in Y. Shi, G.D. van Albada, J. Dongarra and P.M.A. Sloot (Eds.), Computational Science-ICCS 2007, Lecture Notes in Computer Science, Vol. 4489, Springer, Berlin/Heidelberg, pp. 726-734.10.1007/978-3-540-72588-6_120
  19. NVIDIA Corporation (2012). NVIDIA CUDA programming guide, http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming_Guide.pdf.
  20. NVIDIA Corporation (2013). NVIDIA’s next generation CUDA compute architecture: Kepler GK110, http://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf.
  21. Michailidis, P.D. and Margaritis, K.G. (2013). Accelerating kernel density estimation on the GPU using the CUDA framework, Applied Mathematical Sciences 7(30): 1447-1476.10.12988/ams.2013.13133
  22. Nelder, J.A. and Mead, R. (1965). A simplex method for function minimization, The Computer Journal 7(4): 308-313.10.1093/comjnl/7.4.308
  23. Raykar, V. and Duraiswami, R. (2006). Very fast optimal bandwidth selection for univariate kernel density estimation, Technical Report CS-TR-4774/UMIACS-TR-2005-73, University of Maryland, College Park, MD.10.1137/1.9781611972764.53
  24. Raykar, V., Duraiswami, R. and Zhao, L. (2010). Fast computation of kernel estimators, Journal of Computational and Graphical Statistics 19(1): 205-220.10.1198/jcgs.2010.09046
  25. Sawerwain, M. (2012). GPU-based parallel algorithms for transformations of quantum states expressed as vectors and density matrices, in R. Wyrzykowski, J. Dongarra, K. Karczewski and J. Wa´sniewski (Eds.), Parallel Processing and Applied Mathematics, Lecture Notes in Computer Science, Vol. 7203, Springer-Verlag, New York, NY/Berlin/Heidelberg, pp. 215-224.10.1007/978-3-642-31464-3_22
  26. Sheather, S. (2004). Density estimation, Statistical Science 19(4): 588-597.10.1214/088342304000000297
  27. Silverman, B. (1986). Density Estimation for Statistics and Data Analysis, Chapman & Hall/CRC Monographs on Statistics & Applied Probability, London.
  28. Silverman, B.W. (1982). Algorithm AS 176: Kernel density estimation using the fast Fourier transform, Journal of the Royal Statistical Society: Series C (Applied Statistics) 31(1): 93-99.10.2307/2347084
  29. Simonoff, J. (1996). Smoothing Methods in Statistics, Springer Series in Statistics, Springer-Verlag, New York, NY/Berlin/Heidelberg.10.1007/978-1-4612-4026-6
  30. Wand, M. and Jones, M. (1995). Kernel Smoothing, Chapman & Hall/CRC Monographs on Statistics & Applied Probability, Chapman&Hall, London.
  31. Xavier, C. and Iyengar, S. (1998). Introduction to Parallel Algorithms, Wiley Series on Parallel and Distributed Computing, Wiley.
  32. Yang, C., Duraiswami, R. and Gumerov, N. (2003). Improved fast Gauss transform, Technical Report CS-TR-4495, University of Maryland, College Park, MD.
DOI: https://doi.org/10.2478/amcs-2013-0065 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 869 - 885
Published on: Dec 31, 2013
Published by: University of Zielona Góra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2013 Witold Andrzejewski, Artur Gramacki, Jarosław Gramacki, published by University of Zielona Góra
This work is licensed under the Creative Commons License.

Volume 23 (2013): Issue 4 (December 2013)