Have a personal or library account? Click to login
Using a graph grammar system in the finite element method Cover

References

  1. Albers, B., Savidis, S.A., Tas¸an, E., von Estorff, O. and Gehlken, M. (2012). BEM and FEM results of displacements in a poroelastic column, International Journal of Applied Mathematics and Computer Science 22(4): 883-896, DOI: 10.2478/v10006-012-0065-y.10.2478/v10006-012-0065-y
  2. Barboteu, M., Bartosz, K. and Kalita, P. (2013). An analytical and numerical approach to a bilateral contact problem with nonmonotone friction, International Journal of Applied Mathematics and Computer Science 23(2): 263-276, DOI: 10.2478/amcs-2013-0020.10.2478/amcs-2013-0020
  3. Csuhaj-Varjú, E. (2004). Grammar systems: A short survey, Proceedings of Grammar Systems Week 2004, Budapest, Hungary, pp. 141-157.
  4. Csuhaj-Varjú, E., Dassow, J., Kelemen, J. and Paun, G. (1994). Grammar Systems. A Grammatical Approach to Distribution and Cooperation, Topics in Computer Mathematics 8, Gordon and Breach Science Publishers, Yverdon.
  5. Csuhaj-Varjú, E., Dassow, J. and Paun, G. (1993). Dynamically controlled cooperating/distributed grammar systems, Information Sciences 69(1-2): 1-25.10.1016/0020-0255(93)90037-M
  6. Demkowicz, L. (2006). Computing with hp-Adaptive Finite Elements, Vol. I: One and Two Dimensional Elliptic and Maxwell Problems, Chapman and Hall/CRC Applied Mathematics and Nonlinear Science, Taylor & Franics Group, Boca Raton, FL/London/New York, NY.10.1201/9781420011685
  7. Druskin, V., Knizhnerman, A. and Lee, P. (1999). New spectral Lanczos decomposition method for induction modeling in arbitrary 3-d geometry, Geophysics 64(3): 701-706.10.1190/1.1444579
  8. Flasiński, M. and Schaefer, R. (1996). Quasi context sensitive graph grammars as a formal model of FE mesh generation, Computer-Assisted Mechanics and Engineering Science 3: 191-203.
  9. Grabska, E. (1993). Theoretical concepts of graphical modeling, Part two: cp-graph grammars and languages, Machine Graphics and Vision 2(2): 149-178.
  10. Grabska, E. and Strug, B. (2005). Applying cooperating distributed graph grammars in computer aided design, in R.Wyrzykowski, J. Dongarra, N.Meyer and J.Wa´sniewski (Eds.), Parallel Processing and Applied Mathematics, Lecture Notes in Computer Science, Vol. 3911, Springer, Berlin/Heidelberg, pp. 567-574.
  11. Hild, P. (2011). A sign preserving mixed finite element approximation for contact problems, International Journal of Applied Mathematics and Computer Science 21(3): 487-498, DOI: 10.2478/v10006-011-0037-7.10.2478/v10006-011-0037-7
  12. Kelemen, J. (1991). Syntactical models of cooperating/distributed problem solving, Journal of Experimental and Theoretical AI 3(1): 1-10.10.1080/09528139108915277
  13. Kukluk, J., Holder, L. and Cook, D. (2008). Inferring graph grammars by detecting overlap in frequent subgraphs, International Journal of Applied Mathematics and Computer Science 18(2): 241-250, DOI: 10.2478/v10006-008-0022-y.10.2478/v10006-008-0022-y
  14. Martín-Vide, C. and Mitrana, V. (1998). Cooperation in contextual grammars, Proceedings of the MFCS’98 Satellite Workshop on Grammar Systems, Brno, Czech Republic, pp. 289-302.
  15. Newman, G. and Alumbaugh, D. (2002). Three-dimensional induction logging problems, Part 2: A finite-difference solution, Geophysics 67(2): 484-491.10.1190/1.1468608
  16. Pardo, D., Demkowicz, L., Torres-Verd´ın, C. and Paszynski, M. (2006). Two-dimensional high-accuracy simulation of resistivity logging-while-drilling (LWD) measurements using a self-adaptive goal-oriented hp finite element method, SIAM Journal on Applied Mathematics 66(6): 2085-2106.10.1137/050631732
  17. Pardo, D., Demkowicz, L., Torres-Verd´ın, C. and Paszynski, M. (2007). A self-adaptive goal-oriented hp-finite element method with electromagnetic applications, Part II: Electrodynamics, Computer Methods in Applied Mechanics and Engineering 196(37): 3585-3597.10.1016/j.cma.2006.10.016
  18. Pardo, D., Torres-Verd´ın, C. and Paszynski, M. (2008). Simulations of 3d DC borehole resistivity measurements with a goal-oriented hp finite-element method, Part II: Through-casing resistivity instruments, Computational Geosciences 12(1): 83-89.10.1007/s10596-007-9061-y
  19. Paszynska, A., Grabska, E. and Paszynski, M. (2012a). A graph grammar model of the hp adaptive three dimensional finite element method, Part I, Fundamenta Informaticae 114(2): 149-182.10.3233/FI-2012-622
  20. Paszynska, A., Grabska, E. and Paszynski, M. (2012b). A graph grammar model of the hp adaptive three dimensional finite element method, Part II, Fundamenta Informaticae 114(2): 183-201.10.3233/FI-2012-623
  21. Paszynska, A., Paszynski, M. and Grabska, A. (2008). Graph transformations for modeling hp-adaptive finite element method with triangular elements, in M. Bubak, G.D. Albada, J. Dongarra and P.M.A. Sloot (Eds.), ICCS 2008, Lecture Notes in Computer Science, Vol. 5103, Springer, Berlin/Heidelberg, pp. 604-613.10.1007/978-3-540-69389-5_68
  22. Paszynska, A., Paszynski, M. and Grabska, E. (2009). Graph transformations for modeling hp-adaptive finite element method with mixed triangular and rectangular elements, in G. Allen, J. Nabrzyski, E. Seidel, G.D. Albada, J. Dongarra and P.M.A. Sloot (Eds.), ICCS 2009, Lecture Notes in Computer Science, Vol. 5545, Springer, Berlin/Heidelberg, pp. 875-884.10.1007/978-3-642-01973-9_97
  23. Paszynski, M. (2009a). On the parallelization of self-adaptive hp-finite element methods, Part I: Composite programmable graph grammar model, Fundamenta Informaticae 93(4): 411-434.10.3233/FI-2009-111
  24. Paszynski, M. (2009b). On the parallelization of self-adaptive hp-finite element methods, Part II: Partitioning communication agglomeration mapping (PCAM) analysis, Fundamenta Informaticae 93(4): 435-457.10.3233/FI-2009-112
  25. Paszynski, M., Pardo, D. and Calo, V. (2013). A direct solver with reutilization of LU factorizations for h-adaptive finite element grids with point singularities, Computers & Mathematics with Applications 65(8): 1140-1151.10.1016/j.camwa.2013.02.006
  26. Paszynski, M., Pardo, D. and Paszynska, A. (2011). Out-of-core multi-frontal solver for multi-physics hp adaptive problems, Procedia Computer Science 4: 1788-1797.10.1016/j.procs.2011.04.194
  27. Paszynski, M. and Schaefer, R. (2010). Graph grammar-driven parallel partial differential equation solver, Computer- Assisted Mechanics and Engineering Science 22(9): 1063-1097.
  28. Spicher, A., Michel, O. and Giavitto, J. (2010). Declarative mesh subdivision using topological rewriting in MGS, Graph Transformations: 5th International Conference, ICGT 2010, Enschede, The Netherlands, pp. 298-313.
  29. Szymczak, A., Paszynska, A. and Paszynski, M. (2011). Anisotropic 2d mesh adaptation in hp-adaptive FEM, Procedia Computer Science 4: 1818-1827.10.1016/j.procs.2011.04.197
  30. Wang, T. and Fang, S. (2001). 3-d electromagnetic anisotropy modeling using finite differences, Geophysics 66(5): 13861398.10.1190/1.1486779
  31. Zhang, R., Mackie, L. and Madden, T. (1995). 3-d resistivity forward modeling and inversion using conjugate gradients, Geophysics 60: 1312-1325. 10.1190/1.1443868
DOI: https://doi.org/10.2478/amcs-2013-0063 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 839 - 853
Published on: Dec 31, 2013
Published by: University of Zielona Góra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2013 Barbara Strug, Anna Paszynśka, Maciej Paszynśki, Ewa Grabska, published by University of Zielona Góra
This work is licensed under the Creative Commons License.

Volume 23 (2013): Issue 4 (December 2013)