Have a personal or library account? Click to login
Application of the partitioning method to specific Toeplitz matrices Cover

References

  1. Banham, M.R. and Katsaggelos, A.K. (1997). Digital image restoration, IEEE Signal Processing Magazine 14(2): 24-41.10.1109/79.581363
  2. Ben-Israel, A. and Grevile, T.N.E. (2003). Generalized Inverses, Theory and Applications, Second Edition, Canadian Mathematical Society/Springer, New York, NY.
  3. Bhimasankaram, P. (1971). On generalized inverses of partitioned matrices, Sankhya: The Indian Journal of Statistics, Series A 33(3): 311-314.
  4. Bovik, A. (2005). Handbook of Image and Video Processing, Elsevier Academic Press, Burlington.
  5. Bovik, A. (2009). The Essential Guide to the Image Processing, Elsevier Academic Press, Burlington.
  6. Chantas, G.K., Galatsanos, N.P. and Woods, N.A. (2007). Super-resolution based on fast registration and maximum a posteriori reconstruction, IEEE Transactions on Image Processing 16(7): 1821-1830.10.1109/TIP.2007.896664
  7. Chountasis, S., Katsikis, V.N. and Pappas, D. (2009a). Applications of the Moore-Penrose inverse in digital image restoration, Mathematical Problems in Engineering 2009, Article ID: 170724, DOI: 10.1155/2010/750352.10.1155/2010/750352
  8. Chountasis, S., Katsikis, V.N. and Pappas, D. (2009b). Image restoration via fast computing of the Moore-Penrose inverse matrix, 16th International Conference on Systems, Signals and Image Processing, IWSSIP 2009,Chalkida, Greece, Article number: 5367731.10.1109/IWSSIP.2009.5367731
  9. Chountasis, S., Katsikis, V.N. and Pappas, D. (2010). Digital image reconstruction in the spectral domain utilizing the Moore-Penrose inverse, Mathematical Problems in Engineering 2010, Article ID: 750352, DOI: 10.1155/2010/750352.10.1155/2010/750352
  10. Cormen, T.H., Leiserson, C.E., Rivest, R.L. and Stein, C. (2001). Introduction to Algorithms, Second Edition, MIT Press, Cambridge, MA.
  11. Courrieu, P. (2005). Fast computation ofMoore-Penrose inverse matrices, Neural Information Processing-Letters and Reviews 8(2): 25-29.
  12. Craddock, R.C., James, G.A., Holtzheimer, P.E. III, Hu, X.P. and Mayberg, H.S. (2012). A whole brain FMRI atlas generated via spatially constrained spectral clustering, Human Brain Mapping 33(8): 1914-1928.10.1002/hbm.21333383892321769991
  13. Dice, L.R. (1945). Measures of the amount of ecologic association between species, Ecology 26(3): 297-302.10.2307/1932409
  14. Górecki, T. and Łuczak, M. (2013). Linear discriminant analysis with a generalization of the Moore-Penrose pseudoinverse, International Journal of Applied Mathematics and Computer Science 23(2): 463-471, DOI: 10.2478/amcs-2013-0035.10.2478/amcs-2013-0035
  15. Graybill, F. (1983). Matrices with Applications to Statistics, Second Edition, Wadsworth, Belmont, CA.
  16. Greville, T.N.E. (1960). Some applications of the pseudo-inverse of matrix, SIAM Review 3(1): 15-22.10.1137/1002004
  17. Hansen, P.C., Nagy, J.G. and O’Leary, D.P. (2006). Deblurring Images: Matrices, Spectra, and Filtering, SIAM, Philadelphia, PA.10.1137/1.9780898718874
  18. Hillebrand, M. and Muller, C.H. (2007). Outlier robust corner-preserving methods for reconstructing noisy images, The Annals of Statistics 35(1): 132-165.10.1214/009053606000001109
  19. Hufnagel, R.E. and Stanley, N.R. (1964). Modulation transfer function associated with image transmission through turbulence media, Journal of the Optical Society of America 54(1): 52-60.10.1364/JOSA.54.000052
  20. Kalaba, R.E. and Udwadia, F.E. (1993). Associative memory approach to the identification of structural and mechanical systems, Journal of Optimization Theory and Applications 76(2): 207-223.10.1007/BF00939605
  21. Kalaba, R.E. and Udwadia, F.E. (1996). Analytical Dynamics: A New Approach, Cambridge University Press, Cambridge.
  22. Karanasios, S. and Pappas, D. (2006). Generalized inverses and special type operator algebras, Facta Universitatis, Mathematics and Informatics Series 21(1): 41-48.
  23. Katsikis, V.N., Pappas, D. and Petralias, A. (2011). An improved method for the computation of the Moore-Penrose inverse matrix, Applied Mathematics and Computation 217(23): 9828-9834.10.1016/j.amc.2011.04.080
  24. Katsikis, V. and Pappas, D. (2008). Fast computing of the Moore-Penrose inverse matrix, Electronic Journal of Linear Algebra 17(1): 637-650.10.13001/1081-3810.1287
  25. MathWorks (2009). Image Processing Toolbox User’s Guide, The Math Works, Inc., Natick, MA.
  26. MathWorks (2010). MATLAB 7 Mathematics, TheMathWorks, Inc., Natick, MA.
  27. Noda, M.T., Makino, I. and Saito, T. (1997). Algebraic methods for computing a generalized inverse, ACM SIGSAM Bulletin 31(3): 51-52.10.1145/271130.271204
  28. Penrose, R. (1956). On a best approximate solution to linear matrix equations, Proceedings of the Cambridge Philosophical Society 52(1): 17-19.10.1017/S0305004100030929
  29. Prasath, V.B.S. (2011). A well-posed multiscale regularization scheme for digital image denoising, International Journal of Applied Mathematics and Computer Science 21(4): 769-777, DOI: 10.2478/v10006-011-0061-7.10.2478/v10006-011-0061-7
  30. Rao, C. (1962). A note on a generalized inverse of a matrix with applications to problems in mathematical statistics, Journal of the Royal Statistical Society, Series B 24(1): 152-158.10.1111/j.2517-6161.1962.tb00447.x
  31. Röbenack, K. and Reinschke, K. (2011). On generalized inverses of singular matrix pencils, International Journal of Applied Mathematics and Computer Science 21(1): 161-172, DOI: 10.2478/v10006-011-0012-3.10.2478/v10006-011-0012-3
  32. Schafer, R.W., Mersereau, R.M. and Richards, M.A. (1981). Constrained iterative restoration algorithms, Proceedings of the IEEE 69(4): 432-450.10.1109/PROC.1981.11987
  33. Shinozaki, N., Sibuya, M. and Tanabe, K. (1972). Numerical algorithms for the Moore-Penrose inverse of a matrix: Direct methods, Annals of the Institute of Statistical Mathematics 24(1): 193-203.10.1007/BF02479751
  34. Smoktunowicz, A. and Wr´obel, I. (2012). Numerical aspects of computing the Moore-Penrose inverse of full column rank matrices, BIT Numerical Mathematics 52(2): 503-524.10.1007/s10543-011-0362-0
  35. Stojanović, I., Stanimirovi´c, P. and Miladinovi´c, M. (2012). Applying the algorithm of Lagrange multipliers in digital image restoration, Facta Universitatis, Mathematics and Informatics Series 27(1): 41-50.
  36. Udwadia, F.E. and Kalaba, R.E. (1997). An alternative proof for Greville’s formula, Journal of Optimization Theory and Applications 94(1): 23-28.10.1023/A:1022699317381
  37. Udwadia, F.E. and Kalaba, R.E. (1999). General forms for the recursive determination of generalized inverses: Unified approach, Journal of Optimization Theory and Applications 101(3): 509-521. 10.1023/A:1021781918962
DOI: https://doi.org/10.2478/amcs-2013-0061 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 809 - 821
Published on: Dec 31, 2013
Published by: University of Zielona Góra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2013 Predrag Stanimirović, Marko Miladinović, Igor Stojanović, Sladjana Miljković, published by University of Zielona Góra
This work is licensed under the Creative Commons License.

Volume 23 (2013): Issue 4 (December 2013)