Have a personal or library account? Click to login
Exact boundary controllability of coupled hyperbolic equations Cover
Open Access
|Dec 2013

References

  1. Alabau-Boussouira, F. (2003). A two-level energy method for indirect boundary observability and controllability of weakly coupled hyperbolic systems, SIAM Journal on Control and Optimization 42(3): 871-906.10.1137/S0363012902402608
  2. Alabau-Boussouira, F. and Leautaud, M. (2011). Indirect controllability of locally coupled systems under geometric conditions, Comptes Rendus Mathematique 349(7-8): 395-400.10.1016/j.crma.2011.02.004
  3. Ammar-Kohdja, A., Benabdallah, M., Gonz´alez-Burgos, L. and de Teresa, L. (2011). Recent results on the controllability of coupled parabolic problems: A survey, Mathematical Control and Related Fields 1(3): 267-30610.3934/mcrf.2011.1.267
  4. Avdonin, S.A. and Ivanov, S.A., (1995). Families of Exponentials. The Method of Moments in Controllability Problems for Distributed Parameter Systems, Cambridge University Press, New York, NY.
  5. Avdonin, S.A. and Ivanov, S.A. (2001). Exponential Riesz bases of subspaces and divided differences, St Petersburg Mathematical Journal 13(3): 339-351.
  6. Avdonin, S. and Moran, W. (2001a). Ingham-type inequalities and Riesz bases of divided differences, International Journal of Applied Mathematics and Computer Science 11(4): 803-820.
  7. Avdonin, S. and Moran, W. (2001b). Simultaneous control problems for systems of elastic strings and beams, Systems and Control Letters 44(2): 147-155.10.1016/S0167-6911(01)00137-2
  8. Avdonin, S. and Pandolfi, L. (2011). Temperature and heat flux dependence independence for heat equations with memory, in R. Sipahi, T. Vyhlidal, S.-I. Niculescu and P. Pepe (Eds.), Time Delay Systems-Methods, Applications and New Trends, Lecture Notes in Control and Information Sciences, Vol. 423, Springer-Verlag, Berlin/Heidelberg, pp. 87-101.
  9. Biot, M. (1962). Generalized theory of acoustic propagation in porous dissipative media, The Journal of the Acoustical Society of America 34(9): 1254-1264.10.1121/1.1918315
  10. Bodart, O. and Fabre, C. (1995). Controls insensitizing the norm of the solution of a semilinear heat equation, Journal of Mathematical Analysis and Applications 195(3): 658-683.10.1006/jmaa.1995.1382
  11. Dager, R. (2006). Insensitizing controls for the 1-D wave equation, SIAM Journal on Control and Optimization 45(5): 1758-1768.10.1137/060654372
  12. El Jai, A. and Hamzaoui, H. (2009). Regional observation and sensors, International Journal of Applied Mathematics and Computer Science 19(1): 5-14, DOI: 10.2478/v10006-009-0001-y.10.2478/v10006-009-0001-y
  13. Hansen, S. and Zuazua E. (1995). Exact controllability and stabilization of a vibrating string with an interior point mass, SIAM Journal on Control and Optimization 33(5): 1357-1391.10.1137/S0363012993248347
  14. Holger, S., Frehner, M. and Schmalholz S. (2010). Waves in residual-saturated porous media, in G.A. Maugin and A.V. Metrikine (Eds.), Mechanics of Generalized Continua, Advances in Mechanics and Mathematics, Vol. 21, Springer, New York, NY, pp. 179-187.
  15. Kavian, O. and de Teresa, L. (2010). Unique continuation principle for systems of parabolic equations, ESAIM: Control, Optimisation and Calculus of Variations 16(2): 247-274.10.1051/cocv/2008077
  16. Khapalov, A. (2010). Source localization and sensor placement in environmental monitoring, International Journal of Applied Mathematics and Computer Science 20(3): 445-458, DOI: 10.2478/v10006-010-0033-3.10.2478/v10006-010-0033-3
  17. Leonard, E. (1996). The matrix exponential, SIAM Review 38(3): 507-512.10.1137/S0036144595286488
  18. Lions, J.L. (1989). Remarques pr´eliminaires sur le contrˆole des syst`emes `a donn´ees incompl`etes, XI Congreso de Ecuaciones Diferenciales y Aplicaciones (CEDYA), M´alaga, Spain pp. 43-54.
  19. Najafi, M. (2001). Study of exponential stability of coupled wave systems via distributed stabilizer, International Journal of Mathematics and Mathematical Sciences 28(8): 479-491.10.1155/S0161171201003829
  20. Najafi, M., Sarhangi G.R. and Wang H. (1997). Stabilizability of coupled wave equations in parallel under various boundary conditions, IEEE Transactions on Automatic Control 42(9): 1308-1312.10.1109/9.623099
  21. Pandolfi, L. (2009). Riesz system and the controllability of heat equations with memory Integral Equations and Operator Theory 64(3): 429-453.10.1007/s00020-009-1682-1
  22. Rosier, L. and de Teresa, L. (2011). Exact controllability of a cascade system of conservative equations, Comptes Rendus Mathematique 349(5): 291-296.10.1016/j.crma.2011.01.014
  23. Russell, D. (1978). Controllability and stabilizability theory for linear partial differential equations, SIAM Review 20(4): 639-739.10.1137/1020095
  24. Tebou, L. (2008). Locally distributed desensitizing controls for the wave equation, Comptes Rendus Mathematique 346(7): 407-412. de Teresa, L. (2000). Insensitizing controls for a semilinear heat equation, Communications in Partial Differential Equations 25(1-2): 39-72.
  25. Ucinski, D. and Patan, M. (2010). Sensor network design for the estimation of spatially distributed processes, International Journal of Mathematics and Mathematical Sciences 20(3): 459-481, DOI: 10.2478/v10006-010-0034-2. 10.2478/v10006-010-0034-2
DOI: https://doi.org/10.2478/amcs-2013-0052 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 701 - 709
Published on: Dec 31, 2013
Published by: University of Zielona Góra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2013 Sergei Avdonin, Abdon Choque Rivero, Luz De Teresa, published by University of Zielona Góra
This work is licensed under the Creative Commons License.

Volume 23 (2013): Issue 4 (December 2013)