Have a personal or library account? Click to login

A modified convolution and product theorem for the linear canonical transform derived by representation transformation in quantum mechanics

By:
Open Access
|Sep 2013

References

  1. Almeida, L. (1994). The fractional Fourier transform and time-frequency representations, IEEE Transactions on SignalProcessing 42(11): 3084-3091.10.1109/78.330368
  2. Almeida, L. (1997). Product and convolution theorems for the fractional Fourier transform, IEEE Signal Processing Letters4(1): 15-17.10.1109/97.551689
  3. Barshan, B., Ozaktas, H. and Kutey, M. (1997). Optimal filters with linear canonical transformations, Optics Communications 135(1-3): 32-36.10.1016/S0030-4018(96)00598-6
  4. Bastiaans, M. (1979). Wigner distribution function and its application to first-order optics, Journal of Optical Societyof America 69(12): 1710-1716.10.1364/JOSA.69.001710
  5. Bernardo, L. (1996). ABCD matrix formalism of fractional Fourier optics, Optical Engineering 35(03): 732-740.10.1117/1.600641
  6. Bouachache, B. and Rodriguez, F. (1984). Recognition of time-varying signals in the time-frequency domain by means of the Wigner distribution, IEEE International Conferenceon Acoustics, Speech, and Signal Processing, SanDiego, CA, USA, Vol. 9, pp. 239-242.
  7. Classen, T.A.C.M. and Mecklenbrauker, W.F.G. (1980). The Wigner distribution: A tool for time-frequency signal analysis, Part I: Continuous time signals, Philips Journalof Research 35(3): 217-250.
  8. Cohen, L. (1989). Time-frequency distributions: A review, Proceedingsof the IEEE 77(7): 941-981.10.1109/5.30749
  9. Collins, S. (1970). Lens-system diffraction integral written in terms of matrix optics, Journal of Optical Society of America60(9): 1168-1177.10.1364/JOSA.60.001168
  10. Deng, B., Tao, R. and Wang, Y. (2006). Convolution theorem for the linear canonical transform and their applications, Science in China, Series F: Information Sciences49(5): 592-603.10.1007/s11432-006-2016-4
  11. Gdawiec, K. and Domańska, D. (2011). Partitioned iterated function systems with division and a fractal dependence graph in recognition of 2D shapes, International Journalof Applied Mathematics and Computer Science 21(4): 757-767, DOI: 10.2478/v10006-011-0060-8.10.2478/v10006-011-0060-8
  12. Goel, N. and Singh, K. (2011). Analysis of Dirichlet, generalized Hamming and triangular window functions in the linear canonical transform domain, Signal, Image andVideo Processing DOI: 10.1007/s11760-011-0280-2.10.1007/s11760-011-0280-2
  13. Healy, J. and Sheridan, J. (2008). Cases where the linear canonical transform of a signal has compact support or is band-limited, Optics Letters 33(3): 228-230.10.1364/OL.33.000228
  14. Healy, J. and Sheridan, J.T. (2009). Sampling and discretization of the linear canonical transform, Signal Processing89(4): 641-648.10.1016/j.sigpro.2008.10.011
  15. Hennelly, B. and Sheridan, J.T. (2005a). Fast numerical algorithm for the linear canonical transform, Journal ofOptical Society of America A 22(5): 928-937.10.1364/JOSAA.22.00092815898553
  16. Hennelly, B. and Sheridan, J.T. (2005b). Generalizing, optimizing, and inventing numerical algorithms for the fractional Fourier, Fresnel, and linear canonical transforms, Journal of Optical Society of America A22(5): 917-927.10.1364/JOSAA.22.00091715898552
  17. Hlawatsch, F. and Boudreaux-Bartels, G.F. (1992). Linear and quadratic time-frequency signal representation, IEEE SignalProcessing Magazine 9(2): 21-67.10.1109/79.127284
  18. Hong-yi, F., Ren, H. and Hai-Liang, L. (2008). Convolution theorem of fractional Fourier transformation derived by representation transformation in quantum mechanics, Communication Theoretical Physics 50(3): 611-614.10.1088/0253-6102/50/3/15
  19. Hong-yi, F. and VanderLinde, J. (1989). Mapping of classical canonical transformations to quantum unitary operators, Physical Review A 39(6): 2987-2993.10.1103/PhysRevA.39.2987
  20. Hong-yi, F. and Yue, F. (2003). New eigenmodes of propagation in quadratic graded index media and complex fractional Fourier transform, Communication Theoretical Physics39(1): 97-100.10.1088/0253-6102/39/1/97
  21. Hong-yi, F. and Zaidi, H. (1987). New approach for calculating the normally ordered form of squeeze operators, PhysicalReview D 35(6): 1831-1834.10.1103/PhysRevD.35.1831
  22. Hua, J., Liu, L. and Li, G. (1997). Extended fractional Fourier transforms, Journal of Optical Society of AmericaA 14(12): 3316-3322.10.1364/JOSAA.14.003316
  23. Huang, J. and Pandić, P. (2006). Dirac Operators in RepresentationTheory, Birkhauser/Springer, Boston, MA/ New York, NY.
  24. James, D. and Agarwal, G. (1996). The generalized Fresnel transform and its applications to optics, Optics Communications126(4-6): 207-212.10.1016/0030-4018(95)00708-3
  25. Kiusalaas, J. (2010). Numerical Methods in Engineering withPython, Cambridge University Press, New York, NY.10.1017/CBO9780511812224
  26. Koc, A., Ozaktas, H., Candan, C. and Kutey, M. (2008). Digital computation of linear canonical transforms, IEEE Transactionson Signal Processing 56(6): 2383-2394.10.1109/TSP.2007.912890
  27. Li, B., Tao, R. and Wang, Y. (2007). New sampling formulae related to linear canonical transform, Signal Processing87(5): 983-990.10.1016/j.sigpro.2006.09.008
  28. Moshinsky, M. and Quesne, C. (1971). Linear canonical transformations and their unitary representations, Journalof Mathematical Physics 12(8): 1772-1783.10.1063/1.1665805
  29. Namias, V. (1979). The fractional order Fourier transform and its application to quantum mechanics, IMA Journal of AppliedMathematics 25(3): 241-265.10.1093/imamat/25.3.241
  30. Nazarathy, M. and Shamir, J. (1982). First-order optics-a canonical operator representation: Lossless systems, Journalof Optical Society of America A 72(3): 356-364.10.1364/JOSA.72.000356
  31. Ogura, A. (2009). Classical and quantum ABCD-transformation and the propagation of coherent and Gaussian beams, Journalof Physics, B: Atomic, Molecular and Optical Physics42(14): 145504, DOI:10.1088/0953-4075/42/14/145504.10.1088/0953-4075/42/14/145504
  32. Ogura, A. and Sekiguchi, M. (2007). Algebraic structure of the Feynman propagator and a new correspondence for canonical transformations, Journal of MathematicalPhysics 48(7): 072102, DOI:10.1063/1.2748378.10.1063/1.2748378
  33. Oktem, F. and Ozaktas, H. (2010). Equivalence of linear canonical transform domains to fractional Fourier domains and the bicanonical width product: A generalization of the space-bandwidth product, Journal of Optical Societyof America A 27(8): 1885-1895.10.1364/JOSAA.27.00188520686595
  34. Ozaktas, H., Barshan, B., Mendlovic, D. and Onural, L. (1994). Convolution, filtering, and multiplexing in fractional Fourier domains and their relationship to chirp and wavelet transforms, Journal of Optical Society ofAmerica A 11(2): 547-559. 10.1364/JOSAA.11.000547
  35. Ozaktas, H., Kutey, M. and Zalevsky, Z. (2000). The FractionalFourier Transform with Applications in Optics and SignalProcessing, John Wiley and Sons, New York, NY.
  36. Palma, C. and Bagini, V. (1997). Extension of the Fresnel transform to ABCD systems, Journal of Optical Societyof America A 14(8): 1774-1779.10.1364/JOSAA.14.001774
  37. Pei, S. and Ding, J.J. (2001). Relations between fractional operations and time-frequency distributions, and their applications, IEEE Transactions on Signal Processing49(8): 1638-1655.10.1109/78.934134
  38. Pei, S. and Ding, J.J. (2002a). Closed-form discrete fractional and affine Fourier transforms, IEEE Transactions on SignalProcessing 48(5): 1338-1353.10.1109/78.839981
  39. Pei, S. and Ding, J.J. (2002b). Eigenfunctions of linear canonical transform, IEEE Transactions on Signal Processing50(1): 11-26.10.1109/78.972478
  40. Portnoff, M. (1980). Time-frequency representation of digital signals and systems based on short-time Fourier analysis, IEEE Transactions on Acoustics, Speech and Signal Processing28(1): 55-69.10.1109/TASSP.1980.1163359
  41. Puri, R. (2001). Mathematical Methods of Quantum Optics, Springer-Verlag, Berlin/Heidelberg.10.1007/978-3-540-44953-9
  42. Sharma, K. and Joshi, S. (2006). Signal separation using linear canonical and fractional Fourier transforms, Optics Communications265(2): 454-460.10.1016/j.optcom.2006.03.062
  43. Sharma, K. and Joshi, S. (2007). Papoulis-like generalized sampling expansions in fractional Fourier domains and their application to super resolution, Optics Communications278(1): 52-59.10.1016/j.optcom.2007.06.022
  44. Singh, A. and Saxena, R. (2012). On convolution and product theorems for FRFT, Wireless Personal Communications65(1): 189-201.10.1007/s11277-011-0235-5
  45. Stern, A. (2006). Sampling of linear canonical transformed signals, Signal Processing 86(7): 1421-1425. 10.1016/j.sigpro.2005.07.031
  46. Świercz, E. (2010). Classification in the Gabor time-frequency domain of non-stationary signals embedded in heavy noise with unknown statistical distribution, International Journalof Applied Mathematics and Computer Science 20(1): 135-147, DOI: 10.2478/v10006-010-0010-x.10.2478/v10006-010-0010-x
  47. Shin, Y.J. and Park, C.H. (2011). Analysis of correlation based dimension reduction methods, International Journal of AppliedMathematics and Computer Science 21(3): 549-558, DOI: 10.2478/v10006-011-0043-9.10.2478/v10006-011-0043-9
  48. Tao, R., Li, B., Wang, Y. and Aggrey, G. (2008). On sampling of bandlimited signals associated with the linear canonical transform, IEEE Transactions on Signal Processing56(11): 5454-5464.10.1109/TSP.2008.929333
  49. Tao, R., Qi, L. and Wang, Y. (2004). Theory and Applicationsof the Fractional Fourier Transform, Tsinghua University Press, Beijing.
  50. Wei, D., Ran, Q. and Li, Y. (2012). A convolution and correlation theorem for the linear canonical transform and its application, Circuits, Systems, and Signal Processing31(1): 301-312.10.1007/s00034-011-9319-4
  51. Wei, D., Ran, Q., Li, Y., Ma, J. and Tan, L. (2009). A convolution and product theorem for the linear canonical transform, IEEE Signal Processing Letters 16(10): 853-856.10.1109/LSP.2009.2026107
  52. Wigner, E. (1932). On the quantum correlation for thermodynamic equilibrium, Physical Review 40(5): 749-759.10.1103/PhysRev.40.749
  53. Wolf, K. (1979). Integral Transforms in Science and Engineering, Plenum Press, New York, NY.10.1007/978-1-4757-0872-1
  54. Zayad, A. (1998). A product and convolution theorems for the fractional Fourier transform, IEEE Signal Processing Letters5(4): 101-103.10.1109/97.664179
  55. Zhang, W., Feng, D. and Gilmore, R. (1990). Coherent states: Theory and some applications, Reviews of Modern Physics62(4): 867-927. 10.1103/RevModPhys.62.867
DOI: https://doi.org/10.2478/amcs-2013-0051 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 685 - 695
Published on: Sep 30, 2013
Published by: University of Zielona Góra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2013 Navdeep Goel, Kulbir Singh, published by University of Zielona Góra
This work is licensed under the Creative Commons License.