Almeida, L. (1994). The fractional Fourier transform and time-frequency representations, IEEE Transactions on SignalProcessing 42(11): 3084-3091.10.1109/78.330368
Barshan, B., Ozaktas, H. and Kutey, M. (1997). Optimal filters with linear canonical transformations, Optics Communications 135(1-3): 32-36.10.1016/S0030-4018(96)00598-6
Bastiaans, M. (1979). Wigner distribution function and its application to first-order optics, Journal of Optical Societyof America 69(12): 1710-1716.10.1364/JOSA.69.001710
Bouachache, B. and Rodriguez, F. (1984). Recognition of time-varying signals in the time-frequency domain by means of the Wigner distribution, IEEE International Conferenceon Acoustics, Speech, and Signal Processing, SanDiego, CA, USA, Vol. 9, pp. 239-242.
Classen, T.A.C.M. and Mecklenbrauker, W.F.G. (1980). The Wigner distribution: A tool for time-frequency signal analysis, Part I: Continuous time signals, Philips Journalof Research 35(3): 217-250.
Collins, S. (1970). Lens-system diffraction integral written in terms of matrix optics, Journal of Optical Society of America60(9): 1168-1177.10.1364/JOSA.60.001168
Deng, B., Tao, R. and Wang, Y. (2006). Convolution theorem for the linear canonical transform and their applications, Science in China, Series F: Information Sciences49(5): 592-603.10.1007/s11432-006-2016-4
Gdawiec, K. and Domańska, D. (2011). Partitioned iterated function systems with division and a fractal dependence graph in recognition of 2D shapes, International Journalof Applied Mathematics and Computer Science 21(4): 757-767, DOI: 10.2478/v10006-011-0060-8.10.2478/v10006-011-0060-8
Goel, N. and Singh, K. (2011). Analysis of Dirichlet, generalized Hamming and triangular window functions in the linear canonical transform domain, Signal, Image andVideo Processing DOI: 10.1007/s11760-011-0280-2.10.1007/s11760-011-0280-2
Healy, J. and Sheridan, J. (2008). Cases where the linear canonical transform of a signal has compact support or is band-limited, Optics Letters 33(3): 228-230.10.1364/OL.33.000228
Healy, J. and Sheridan, J.T. (2009). Sampling and discretization of the linear canonical transform, Signal Processing89(4): 641-648.10.1016/j.sigpro.2008.10.011
Hennelly, B. and Sheridan, J.T. (2005a). Fast numerical algorithm for the linear canonical transform, Journal ofOptical Society of America A 22(5): 928-937.10.1364/JOSAA.22.00092815898553
Hennelly, B. and Sheridan, J.T. (2005b). Generalizing, optimizing, and inventing numerical algorithms for the fractional Fourier, Fresnel, and linear canonical transforms, Journal of Optical Society of America A22(5): 917-927.10.1364/JOSAA.22.00091715898552
Hlawatsch, F. and Boudreaux-Bartels, G.F. (1992). Linear and quadratic time-frequency signal representation, IEEE SignalProcessing Magazine 9(2): 21-67.10.1109/79.127284
Hong-yi, F., Ren, H. and Hai-Liang, L. (2008). Convolution theorem of fractional Fourier transformation derived by representation transformation in quantum mechanics, Communication Theoretical Physics 50(3): 611-614.10.1088/0253-6102/50/3/15
Hong-yi, F. and VanderLinde, J. (1989). Mapping of classical canonical transformations to quantum unitary operators, Physical Review A 39(6): 2987-2993.10.1103/PhysRevA.39.2987
Hong-yi, F. and Yue, F. (2003). New eigenmodes of propagation in quadratic graded index media and complex fractional Fourier transform, Communication Theoretical Physics39(1): 97-100.10.1088/0253-6102/39/1/97
Hong-yi, F. and Zaidi, H. (1987). New approach for calculating the normally ordered form of squeeze operators, PhysicalReview D 35(6): 1831-1834.10.1103/PhysRevD.35.1831
Hua, J., Liu, L. and Li, G. (1997). Extended fractional Fourier transforms, Journal of Optical Society of AmericaA 14(12): 3316-3322.10.1364/JOSAA.14.003316
James, D. and Agarwal, G. (1996). The generalized Fresnel transform and its applications to optics, Optics Communications126(4-6): 207-212.10.1016/0030-4018(95)00708-3
Koc, A., Ozaktas, H., Candan, C. and Kutey, M. (2008). Digital computation of linear canonical transforms, IEEE Transactionson Signal Processing 56(6): 2383-2394.10.1109/TSP.2007.912890
Li, B., Tao, R. and Wang, Y. (2007). New sampling formulae related to linear canonical transform, Signal Processing87(5): 983-990.10.1016/j.sigpro.2006.09.008
Moshinsky, M. and Quesne, C. (1971). Linear canonical transformations and their unitary representations, Journalof Mathematical Physics 12(8): 1772-1783.10.1063/1.1665805
Namias, V. (1979). The fractional order Fourier transform and its application to quantum mechanics, IMA Journal of AppliedMathematics 25(3): 241-265.10.1093/imamat/25.3.241
Nazarathy, M. and Shamir, J. (1982). First-order optics-a canonical operator representation: Lossless systems, Journalof Optical Society of America A 72(3): 356-364.10.1364/JOSA.72.000356
Ogura, A. (2009). Classical and quantum ABCD-transformation and the propagation of coherent and Gaussian beams, Journalof Physics, B: Atomic, Molecular and Optical Physics42(14): 145504, DOI:10.1088/0953-4075/42/14/145504.10.1088/0953-4075/42/14/145504
Ogura, A. and Sekiguchi, M. (2007). Algebraic structure of the Feynman propagator and a new correspondence for canonical transformations, Journal of MathematicalPhysics 48(7): 072102, DOI:10.1063/1.2748378.10.1063/1.2748378
Oktem, F. and Ozaktas, H. (2010). Equivalence of linear canonical transform domains to fractional Fourier domains and the bicanonical width product: A generalization of the space-bandwidth product, Journal of Optical Societyof America A 27(8): 1885-1895.10.1364/JOSAA.27.00188520686595
Ozaktas, H., Barshan, B., Mendlovic, D. and Onural, L. (1994). Convolution, filtering, and multiplexing in fractional Fourier domains and their relationship to chirp and wavelet transforms, Journal of Optical Society ofAmerica A 11(2): 547-559. 10.1364/JOSAA.11.000547
Ozaktas, H., Kutey, M. and Zalevsky, Z. (2000). The FractionalFourier Transform with Applications in Optics and SignalProcessing, John Wiley and Sons, New York, NY.
Palma, C. and Bagini, V. (1997). Extension of the Fresnel transform to ABCD systems, Journal of Optical Societyof America A 14(8): 1774-1779.10.1364/JOSAA.14.001774
Pei, S. and Ding, J.J. (2001). Relations between fractional operations and time-frequency distributions, and their applications, IEEE Transactions on Signal Processing49(8): 1638-1655.10.1109/78.934134
Pei, S. and Ding, J.J. (2002a). Closed-form discrete fractional and affine Fourier transforms, IEEE Transactions on SignalProcessing 48(5): 1338-1353.10.1109/78.839981
Portnoff, M. (1980). Time-frequency representation of digital signals and systems based on short-time Fourier analysis, IEEE Transactions on Acoustics, Speech and Signal Processing28(1): 55-69.10.1109/TASSP.1980.1163359
Sharma, K. and Joshi, S. (2006). Signal separation using linear canonical and fractional Fourier transforms, Optics Communications265(2): 454-460.10.1016/j.optcom.2006.03.062
Sharma, K. and Joshi, S. (2007). Papoulis-like generalized sampling expansions in fractional Fourier domains and their application to super resolution, Optics Communications278(1): 52-59.10.1016/j.optcom.2007.06.022
Singh, A. and Saxena, R. (2012). On convolution and product theorems for FRFT, Wireless Personal Communications65(1): 189-201.10.1007/s11277-011-0235-5
Świercz, E. (2010). Classification in the Gabor time-frequency domain of non-stationary signals embedded in heavy noise with unknown statistical distribution, International Journalof Applied Mathematics and Computer Science 20(1): 135-147, DOI: 10.2478/v10006-010-0010-x.10.2478/v10006-010-0010-x
Shin, Y.J. and Park, C.H. (2011). Analysis of correlation based dimension reduction methods, International Journal of AppliedMathematics and Computer Science 21(3): 549-558, DOI: 10.2478/v10006-011-0043-9.10.2478/v10006-011-0043-9
Tao, R., Li, B., Wang, Y. and Aggrey, G. (2008). On sampling of bandlimited signals associated with the linear canonical transform, IEEE Transactions on Signal Processing56(11): 5454-5464.10.1109/TSP.2008.929333
Wei, D., Ran, Q. and Li, Y. (2012). A convolution and correlation theorem for the linear canonical transform and its application, Circuits, Systems, and Signal Processing31(1): 301-312.10.1007/s00034-011-9319-4
Wei, D., Ran, Q., Li, Y., Ma, J. and Tan, L. (2009). A convolution and product theorem for the linear canonical transform, IEEE Signal Processing Letters 16(10): 853-856.10.1109/LSP.2009.2026107
Zayad, A. (1998). A product and convolution theorems for the fractional Fourier transform, IEEE Signal Processing Letters5(4): 101-103.10.1109/97.664179
Zhang, W., Feng, D. and Gilmore, R. (1990). Coherent states: Theory and some applications, Reviews of Modern Physics62(4): 867-927. 10.1103/RevModPhys.62.867