Alberich, R., Cardona, G., Rosselló, F. and Valiente, G. (2009). An algebraic metric for phylogenetic trees, Applied MathematicsLetters 22(9): 1320-1324.10.1016/j.aml.2009.03.003
Aldous, D.J. (1991). The continuum random tree II: An overview, in M.T. Barlow and N. H. Bingham (Eds.), StochasticAnalysis, Cambridge University Press, Cambridge, pp. 23-70.10.1017/CBO9780511662980.003
Bansal, M., Burleigh, J.G., Eulenstein, O. and Fernández-Baca, D. (2010). Robinson-Foulds supertrees, Algorithms forMolecular Biology 5(1): 18.10.1186/1748-7188-5-18284695220181274
Bansal, M.S., Dong, J. and Fernández-Baca, D. (2011). Comparing and aggregating partially resolved trees, TheoreticalComputer Science 412(48): 6634-6652.10.1016/j.tcs.2011.08.027
Biedrzycki, R. and Arabas, J. (2012). KIS: An automated attribute induction method for classification of DNA sequences, International Journal of Applied Mathematicsand Computer Science 22(3): 711-721, DOI: 10.2478/v10006-012-0053-2.10.2478/v10006-012-0053-2
Bininda-Emonds, O.R.P., Cardillo, M., Jones, K.E., MacPhee, R. D.E., Beck, R.M.D., Grenyer, R., Price, S.A., Vos, R.A., Gittleman, J.L. and Purvis, A. (2007). The delayed rise of present-day mammals, Nature 446(7135): 507-512.10.1038/nature0563417392779
Blum, M.G.B., François, O. and Janson, S. (2006). The mean, variance and limiting distribution of two statistics sensitive to phylogenetic tree balance, The Annals of Applied Probability16(4): 2195-2214.10.1214/105051606000000547
Boc, A., Philippe, H. and Makarenkov, V. (2010). Inferring and validating horizontal gene transfer events using bipartition dissimilarity, Systematic Biology 59(2): 195-211.10.1093/sysbio/syp10320525630
Bogdanowicz, D. and Giaro, K. (2012). Matching split distance for unrooted binary phylogenetic trees, IEEE/ACM Transactionson Computational Biology and Bioinformatics9(1): 150-160.10.1109/TCBB.2011.4821383415
Bogdanowicz, D., Giaro, K. and Wróbel, B. (2012). TreeCmp: Comparison of trees in polynomial time, Evolutionary Bioinformatics8: 475-487.10.4137/EBO.S9657
Bordewich, M. and Semple, C. (2005). On the computational complexity of the rooted subtree prune and regraft distance, Annals of Combinatorics 8(4): 409-423.10.1007/s00026-004-0229-z
Brinkmeyer, M., Griebel, T. and Böcker, S. (2011). Polynomial supertree methods revisited, Advances in Bioinformatics2011: 524182.10.1155/2011/524182324959222229028
Bryant, D. (1997). Building Trees, Hunting for Trees, and ComparingTrees-Theory and Methods in Phylogenetic Analysis, Ph.D. thesis, University of Canterbury, Christchurch.
Cardona, G., Llabrés, M., Rosselló, F. and Valiente, G. (2009a). Metrics for phylogenetic networks I: Generalizations of the Robinson-Foulds metric, IEEE/ACM Transactions onComputational Biology and Bioinformatics 6(1): 46-61.10.1109/TCBB.2008.7019179698
Cardona, G., Llabrés, M., Rosselló, F. and Valiente, G. (2009b). Metrics for phylogenetic networks II: Nodal and triplets metrics, IEEE/ACM Transactions on Computational Biologyand Bioinformatics 6(3): 454-469.10.1109/TCBB.2008.12719644173
Cardona, G., Rossello, F. and Valiente, G. (2009). Comparison of tree-child phylogenetic networks, IEEE/ACM Transactionson Computational Biology and Bioinformatics6(4): 552-569.10.1109/TCBB.2007.7027019875855
Cardona, G., Llabrés, M., Rosselló, F. and Valiente, G. (2010). Nodal distances for rooted phylogenetic trees, Journal ofMathematical Biology 61(2): 253-276.10.1007/s00285-009-0295-219760227
Critchlow, D.E., Pearl, D.K. and Qian, C. (1996). The triples distance for rooted bifurcating phylogenetic trees, SystematicBiology 45(3): 323-334.10.1093/sysbio/45.3.323
Darlu, P. and Guénoche, A. (2011). TreeOfTrees method to evaluate the congruence between gene trees, Journal ofClassification 28(3): 390-403.10.1007/s00357-011-9093-9
Davies, T.J., Barraclough, T.G., Chase, M.W., Soltis, P.S., Soltis, D.E. and Savolainen, V. (2004). Darwin’s abominable mystery: Insights from a supertree of the angiosperms, Proceedings of the National Academy of Sciences of theUnited States of America 101(7): 1904-1909.10.1073/pnas.030812710035702514766971
Fra˛ckiewicz, M. and Palus, H. (2011). KHM clustering technique as a segmentation method for endoscopic colour images, International Journal of Applied Mathematicsand Computer Science 21(1): 203-209, DOI: 10.2478/v10006-011-0015-0.10.2478/v10006-011-0015-0
Górecki, P. and Eulenstein, O. (2012). A Robinson-Foulds measure to compare unrooted trees with rooted trees, in L. Bleris, I.Mandoiu, R. Schwartz and J.Wang (Eds.), BioinformaticsResearch and Applications, Lecture Notes in Computer Science, Vol. 7292, Springer, Berlin/Heidelberg, pp. 115-126.10.1007/978-3-642-30191-9_12
Hayes, M., Walenstein, A. and Lakhotia, A. (2009). Evaluation of malware phylogeny modelling systems using automated variant generation, Journal in Computer Virology5(4): 335-343.10.1007/s11416-008-0100-6
Kennedy, M., Page, R. D.M. and Prum, R. (2002). Seabird supertrees: Combining partial estimates of procellariiform phylogeny, The Auk 119(1): 88-108.10.1093/auk/119.1.88
Lin, Y., Rajan, V. and Moret, B.M.E. (2012). A metric for phylogenetic trees based on matching, IEEE/ACM Transactionson Computational Biology and Bioinformatics9(4): 1014-1022.10.1109/TCBB.2011.157
Ma, B., Li, M. and Zhang, L. (1998). On reconstructing species trees from gene trees in term of duplications and losses, Proceedings of the 2nd Annual International Conferenceon Computational Molecular Biology, RECOMB’98, NewYork, NY, USA, pp. 182-191.
McKenzie, A. and Steel, M. (2000). Distributions of cherries for two models of trees, Mathematical Biosciences164(1): 81-92.10.1016/S0025-5564(99)00060-7
Munzner, T., Guimbretière, F., Tasiran, S., Zhang, L. and Zhou, Y. (2003). TreeJuxtaposer: Scalable tree comparison using focus+context with guaranteed visibility, ACM Transactionson Graphics 22(3): 453-462.10.1145/882262.882291
Nguyen, N., Mirarab, S. and Warnow, T. (2012). MRL and SuperFine+MRL: New supertree methods, Algorithms forMolecular Biology 7(1): 3.10.1186/1748-7188-7-3
Nye, T.M., Liò, P. and Gilks,W.R. (2006). A novel algorithm and web-based tool for comparing two alternative phylogenetic trees, Bioinformatics 22(1): 117-119.10.1093/bioinformatics/bti720
Orlin, J.B. and Ahuja, R.K. (1992). New scaling algorithms for the assignment and minimum mean cycle problems, MathematicalProgramming 54(1-3): 41-56.10.1007/BF01586040
Penny, D., Watson, E.E. and Steel, M.A. (1993). Trees from languages and genes are very similar, Systematic Biology42(3): 382-384.10.1093/sysbio/42.3.382
Restrepo, G., Héber, M. and Llanos, E.J. (2007). Three dissimilarity measures to contrast dendrograms, Journal ofChemical Information and Modeling 47(3): 761-770.10.1021/ci6005189
Stockham, C., Wang, L.-S. and Warnow, T. (2002). Statistically based postprocessing of phylogenetic analysis by clustering, Bioinformatics 18(suppl 1): S285-S293.10.1093/bioinformatics/18.suppl_1.S285
Swenson, M.S., Suri, R., Linder, C.R. and Warnow, T. (2011). An experimental study of Quartets MaxCut and other supertree methods, Algorithms for Molecular Biology6(1): 7.10.1186/1748-7188-6-7310164421504600
Wang, J.T., Shan, H., Shasha, D. and Piel, W.H. (2005). Fast structural search in phylogenetic databases, EvolutionaryBioinformatics Online 1: 37-46. Williams, W.T. and Clifford, H.T. (1971). On the comparison of two classifications of the same set of elements, Taxon20(4): 519-522.