Brychcin, T. and Konopik, M. (2011). Morphological based language models for inflectional languages, Proceedings ofthe 6th IEEE International Conference on Intelligent DataAcquisition and Advanced Computing Systems, Praque,Czech Republic, pp. 560-563.
Chen, S. and Goodman, S. (1999). An empirical study of smoothing techniques for language modeling, ComputerSpeech and Language 1(13): 359-394.10.1006/csla.1999.0128
Devine, E., Gaehde, S. and Curtis, A. (2007). Comparative evaluation of three continuous speech recognition software packages in the generation of medical reports, Journal ofAmerican Medical Informatics Association 1(7): 462-468.10.1136/jamia.2000.0070462
Gale, A. and Sampson, G. (1995). Good-Turing frequency estimation without tears, Journal of Quantitative Linguistics2(1): 217-239.10.1080/09296179508590051
Goodman, J. (2001). A bit of progress in language modeling extended version, Technical Report MSR-TR-2001-72, Machine Learning and Applied Statistics Group, Microsoft Research, Redmond, WA.
Iyer, R. and Ostendorf, M. (1999). Modeling long distance dependence in language: Topic mixtures versus dynamic cache models, IEEE Transactions on Speech and AudioProcessing 7(1): 30-39.10.1109/89.736328
Jelinek, F., Merialdo, B., Roukos, S. and Strauss, M. (2001). A dynamic language model for speech recognition, Proceedingsof the Workshop on Speech and Natural Language,HLT’91, Pacific Grove, CA, USA, pp. 293-295.
Jurafsky, D. and Matrin, J. (2009). Speech and Language Processing. An Introduction to Natural Language Processing,Computational Linguistics and Speech Recognition, Pearson Prentice Hall, Englewood Cliffs, NJ.
Kasprzak, W., Wilkowski, A. and Czapnik, K. (2012). Hand gesture recognition based on free-form contours and probabilistic inference, International Journal of AppliedMathematics and Computer Science 22(2): 437-448, DOI: 10.2478/v10006-012-0033-6.10.2478/v10006-012-0033-6
Katz, S. (1987). Estimation of probabilities from sparse data for the language model component of a speech recognizer, IEEE Transactions on Acoustics, Speech, and Signal Processing35(3): 400-401.10.1109/TASSP.1987.1165125
Kolorenc, J., Nouza, J. and Cerva, P. (2006). Multi-words in the Czech TV and radio news transcription system, Proceedingsof SPECOM 2006, St. Petersburg, Russia, pp. 70-74.
Lee, A., Kawahara, T. and Shikano, K. (2001). Julius-an open source real-time large vocabulary recognition engine, Proceedingsof the European Conference on Speech Communicationand Technology (EUROSPEECH), Aalborg, Denmark, pp. 1691-1694.
Mauces, M., Rotownik, T. and Zemljak, M. (2003). Modelling highly inflected Slovenian language, International Journalof Speech Technology 1(6): 254-257.
Mikolov, T., Deoras, A., Kombrink, S., Burget, L. and Cernocky, J. (2011). Empirical evaluation and combination of advanced language modeling techniques, INTERSPEECH,ISCA, Florence, Italy, pp. 605-608.
Niesler, T., Whittaker, E.W.D. and Woodland, P. (1998). Comparison of part-of-speech and automatically derived category-based language models for speech recognition, Proceedings of ICASSP 98, Seattle, WA, USA, pp. 177-180.
Piasecki, M. and Broda, B. (2007). Correction of medical handwriting OCR based on semantic similarity, in H. Yin, P. Tino, E. Corchado, W. Byrne and X. Yao (Eds.), IntelligentData Engineering and Automated Learning-IDEAL2007, Lecture Notes in Computer Science, Vol. 4881, Springer Verlag, Heidelberg, pp. 437-446.
Sarukkai, R. and Ballard, D. (1996). Word set probability boosting for improved spontaneous dialogue recognition. The ab and tab algorithms, Technical Report TR-601, University of Rochester, New York, NY.
Sas, J. (2010). Application of local bidirectional language model to error correction in Polish medical speech recognition, Journal of Medical Informatics and Technologies15(1): 127-134.
Sas, J. and Żołnierek, A. (2011). Distant co-occurrence language model for ASR in loose word order languages, Proceedingsof the International Conference on Computer RecognitionSystems Cores 2011, Wrocław, Poland, pp. 767-778.
Vaiciunas, A., Kaminskas, V. and Raskinis, G. (2004).Statistical language models of Lithuanian based on word clustering and morphological decomposition, Informatica15(4): 565-580.10.15388/Informatica.2004.079
Ward, W. and Issar, S. (1996). A class based language model for speech recognition, Acoustics, Speech, and Signal Processing,ICASSP 96, Atlanta, GA, USA, pp. 416-418.
Whittaker, E. and Woodland, P. (2003). Language modelling for Russian and English using words and classes, ComputerSpeech and Language 17(1): 87-104.10.1016/S0885-2308(02)00047-5
Woliński, M. (2006). Morfeusz-a practical tool for the morphological analysis of Polish, Inteligent Processingand Web Mining: IIPWM06, Ustro´n, Poland, pp. 503-512.
Wózniak, M. and Krawczyk, B. (2012). Combined classifier based on feature space partitioning, International Journalof Applied Mathematics and Computer Science22(4): 855-866, DOI: 10.2478/v10006-012-0063-0.10.2478/v10006-012-0063-0
Zółko, B., Skurzok, D. and Ziółko, M. (2010). Word n-grams for Polish, Proceedings of the 10th IASTED InternationalConference on Artificial Intelligence and Applications(AIA 2010), Innsbruck, Austria, pp. 197-201.
Ziółko, J., Gałka, J., Jadczyk, T., Skurzok, D. and Masior, M. (2011). Automatic speech recognition system dedicated for Polish, Proceedings of the INTERSPEECH 2011 Conference,Florence, Italy, pp. 3315-3316.
Ziółko, J., Gałka, J. and Skurzok, D. (2010). Speech modelling using phoneme segmentation and modified weighted Levenshtein distance, Proceedings of the ICALP2010 Colloquium,Bordeaux, France, pp. 743-746.