Have a personal or library account? Click to login

Parametric logarithmic type image processing for contrast based auto-focus in extreme lighting conditions

Open Access
|Sep 2013

References

  1. Byrski, W. and Byrski, J. (2012). The role of parameter constraints in EE and OE methods for optimal identification of continuous LTI models, InternationalJournal of Applied Mathematics and Computer Science22(2): 379-388, DOI: 10.2478/v10006-012-0028-3.10.2478/v10006-012-0028-3
  2. Deng, G. (2009). An entropy interpretation of the logarithmic image processing model with application to contrast enhancement, IEEE Transactions on Image Processing18(5): 1135-1140.10.1109/TIP.2009.2016796
  3. Deng, G. (2012). A generalized logarithmic image processing model based on the giga-vision sensor model, IEEE Transactionson Image Processing 21(3): 1406-1414.10.1109/TIP.2011.2166970
  4. Deng, G., Cahill, L.W. and Tobin, G.R. (1995). A study of logarithmic image processing model and its application to image enhancement, IEEE Transactions on Image Processing4(4): 506-512.10.1109/83.370681
  5. Fabijańska, A. (2012). A survey of subpixel edge detection methods for images of heat-emitting metal specimens, International Journal of Applied Mathematicsand Computer Science 22(3): 695-710, DOI: 10.2478/v10006-012-0052-3.10.2478/v10006-012-0052-3
  6. Fernandes, M., Gavet, Y. and Pinoli, J.C. (2010). Improving focus measurements using logarithmic image processing, Journal of Microscopy 242(3): 228-241, http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2818.2010.03461.x/abstract.
  7. Ferwerda, J.A., Pattanaik, S.N., Shirley, P. and Greenberg, D.P. (1996). A model of visual adaptation for realistic image synthesis, SIGGRAPH Conference Proceedings, New Orleans,LA, USA, pp. 249-258.
  8. Florea, C. and Florea, L. (2011). A parametric non-linear algorithm for contrast based autofocus, Proceedings ofthe IEEE International Conference on Intelligent ComputerCommunication and Processing, ICCP, Cluj, Romania, pp. 75-82.
  9. Florea, C., Vertan, C., Florea, L. and Sultana, A. (2009). Non-linear parametric derivation of contour detectors for cellular images, Proceedings of the IEEE InternationalSymposium on Signals, Circuits and Systems, ISSCS, Ias¸i,Romania, Vol. 2, pp. 321-325.
  10. Hefferon, J. (2008). Linear Algebra, Web edition, http://joshua.smcvt.edu/math/hefferon.html.
  11. Jourlin, M. and Pinoli, J.C. (1987). Logarithmic image processing, Acta Stereologica 6(1): 651-656.
  12. Jourlin, M. and Pinoli, J.C. (1988). A model for logarithmic image processing, Journal of Microscopy 149(1): 21-35.10.1111/j.1365-2818.1988.tb04559.x
  13. Jourlin, M. and Pinoli, J.C. (1995). Image dynamic range enhancement and stabilization in the context of the logarithmic image processing model, Signal Processing41(2): 225-237.10.1016/0165-1684(94)00102-6
  14. Kristan, M., Pers, J., Perse, M. and Kovacic, S. (2006). A Bayes-spectral-entropy-based measure of camera focus using a discrete cosine transform, Pattern Recognition Letters27(13): 1431-1439.10.1016/j.patrec.2006.01.016
  15. Krotkov, E. (1987). Focusing, International Journal of ComputerVision 1(3): 223-237.10.1007/BF00127822
  16. Larson, E.C. and Chandler, D.M. (2010). Most apparent distortion: Full-reference image quality assessment and the role of strategy, Journal of Electronic Imaging19(1): 011006.10.1117/1.3267105
  17. Lee, S., Yoo, J., Kumar, Y. and Kim, S. (2009). Reduced energy-ratio measure for robust autofocusing in digital camera, IEEE Signal Processing Letters 16(2): 133-136.10.1109/LSP.2008.2008938
  18. Li, X., He, M. and Roux, M. (2010). Multifocus image fusion based on redundant wavelet transform, IET Image Processing4(4): 283-293.10.1049/iet-ipr.2008.0259
  19. Lim, J.S. (1990). Two Dimensional Signal and Image Processing, Prentice Hall, Upper Saddle River, NJ.
  20. Macmillan, N. and Creelman, C. (Eds) (2005). Detection Theory:A User’s Guide, Lawrence Erlbaum, Mahwah, NJ.
  21. Nayar, S. and Nakagawa, Y. (1994). Shape from focus, IEEETransactions on Pattern Analysis and Machine Intelligence16(8): 824-831.10.1109/34.308479
  22. Oppenheim, A.V. (1965). Superposition in a class of non-linear system, Technical report, MIT, Cambridge, MA.
  23. Oppenheim, A.V. (1967). Generalized superposition, Informationand Control 11(5,6): 528-536.10.1016/S0019-9958(67)90739-5
  24. Panetta, K., Wharton, E. and Agaian, S. (2008). Human visual system-based image enhancement and logarithmic contrast measure, IEEE Transactions on Systems, Man, and Cybernetics,B: Cybernetics 38(1): 174-188.10.1109/TSMCB.2007.90944018270089
  25. Panetta, K., Zhou, Y., Agaian, S. and Wharton, E. (2011). Parameterized logarithmic framework for image enhancement, IEEE Transactions on Systems, Man, andCybernetics, B: Cybernetics 41(2): 460-472.10.1109/TSMCB.2010.205884720977986
  26. Pinoli, J.C. and Debayle, J. (2007). Logarithmic adaptive neighborhood image processing (LANIP): Introduction, connections to human brightness perception, and application issues, EURASIP Journal on Advances inSignal Processing 036105(1), Article ID 36105, DOI: 10.1155/2007/36105.10.1155/2007/36105
  27. Ponomarenko, N., Lukin, V., Zelensky, A., Egiazarian, K., Carli, M. and Battisti, F. (2009). A database for evaluation of full-reference visual quality assessment metrics, Advancesof Modern Radioelectronics 10(1): 30-45.
  28. Pătras¸cu, V. and Voicu, I. (2000). An algebraical model for gray level images, Proceedings of the Exhibition on Optimizationof Electrical and Electronic Equipment, OPTIM,Brasov, Romania, pp. 809-812.
  29. Ramanath, R., Snyder, W., Yoo, Y. and Drew, M. (2005). Color image processing pipeline: A general survey of digital still camera processing, IEEE Signal Processing Magazine22(1): 34-43.10.1109/MSP.2005.1407713
  30. Russell, S.J. and Norvig, P. (2003). Artificial Intelligence: AModern Approach, Prentice Hall, Upper Saddle River, NJ.
  31. Stevens, J. and Stevens, S. (1963). Brightness functions: Effects of adaptation, Journal of the Optical Society of America53(3): 375-385.10.1364/JOSA.53.00037513984028
  32. Stevens, S. (1961). To honor Fechner and repeal his law, Science133(3446): 80-133.10.1126/science.133.3446.8017769332
  33. Subbarao, M. and Tyan, J. (1998). Selecting the optimal focus measure for autofocussing and depth-from-focus, IEEETransactions on Pattern Analysis and Machine Intelligence20(8): 864-870.10.1109/34.709612
  34. Sun, Y., Duthaler, S. and Nelson, B. (2005). Autofocusing algorithm selection in computer microscopy, Proceedingsof the International Conference on Intelligent Robots andSystems, Edmonton, Canada, pp. 809-812.
  35. Svahn, F. (1996). Tools and Methods to Obtaina Passive Autofocus System, Master’s thesis, Technical University of Linkoping, Linkoping, www.viktoria.se/˜fresva/documents/master_thesis.pdf.
  36. Vertan, C., Oprea, A., Florea, C. and Florea, L. (2008). A pseudo-logarithmic framework for edge detection, in J.B. Talon, S. Bourennane, W. Philips, D. Popescu and P. Scheunders (Eds.), Advances in Computer Vision, Lecture Notes in Computer Science, Vol. 5259, Springer-Verlag, Juan-les-Pins, pp. 637-644.
  37. Vollath, D. (1987). Automatic focusing by correlative methods, Journal of Microscopy 147(3): 279-288.10.1111/j.1365-2818.1987.tb02839.x
  38. Wu, Q.Z. and Jeng, B.S. (2002). Background subtraction based on logarithmic intensities, Pattern Recognition Letters23(13): 1529-1536. 10.1016/S0167-8655(02)00116-2
DOI: https://doi.org/10.2478/amcs-2013-0048 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 637 - 648
Published on: Sep 30, 2013
Published by: Sciendo
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2013 Corneliu Florea, Laura Florea, published by Sciendo
This work is licensed under the Creative Commons License.