Byrski, W. and Byrski, J. (2012). The role of parameter constraints in EE and OE methods for optimal identification of continuous LTI models, InternationalJournal of Applied Mathematics and Computer Science22(2): 379-388, DOI: 10.2478/v10006-012-0028-3.10.2478/v10006-012-0028-3
Deng, G. (2009). An entropy interpretation of the logarithmic image processing model with application to contrast enhancement, IEEE Transactions on Image Processing18(5): 1135-1140.10.1109/TIP.2009.2016796
Deng, G. (2012). A generalized logarithmic image processing model based on the giga-vision sensor model, IEEE Transactionson Image Processing 21(3): 1406-1414.10.1109/TIP.2011.2166970
Deng, G., Cahill, L.W. and Tobin, G.R. (1995). A study of logarithmic image processing model and its application to image enhancement, IEEE Transactions on Image Processing4(4): 506-512.10.1109/83.370681
Fabijańska, A. (2012). A survey of subpixel edge detection methods for images of heat-emitting metal specimens, International Journal of Applied Mathematicsand Computer Science 22(3): 695-710, DOI: 10.2478/v10006-012-0052-3.10.2478/v10006-012-0052-3
Fernandes, M., Gavet, Y. and Pinoli, J.C. (2010). Improving focus measurements using logarithmic image processing, Journal of Microscopy 242(3): 228-241, http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2818.2010.03461.x/abstract.
Ferwerda, J.A., Pattanaik, S.N., Shirley, P. and Greenberg, D.P. (1996). A model of visual adaptation for realistic image synthesis, SIGGRAPH Conference Proceedings, New Orleans,LA, USA, pp. 249-258.
Florea, C. and Florea, L. (2011). A parametric non-linear algorithm for contrast based autofocus, Proceedings ofthe IEEE International Conference on Intelligent ComputerCommunication and Processing, ICCP, Cluj, Romania, pp. 75-82.
Florea, C., Vertan, C., Florea, L. and Sultana, A. (2009). Non-linear parametric derivation of contour detectors for cellular images, Proceedings of the IEEE InternationalSymposium on Signals, Circuits and Systems, ISSCS, Ias¸i,Romania, Vol. 2, pp. 321-325.
Jourlin, M. and Pinoli, J.C. (1995). Image dynamic range enhancement and stabilization in the context of the logarithmic image processing model, Signal Processing41(2): 225-237.10.1016/0165-1684(94)00102-6
Kristan, M., Pers, J., Perse, M. and Kovacic, S. (2006). A Bayes-spectral-entropy-based measure of camera focus using a discrete cosine transform, Pattern Recognition Letters27(13): 1431-1439.10.1016/j.patrec.2006.01.016
Larson, E.C. and Chandler, D.M. (2010). Most apparent distortion: Full-reference image quality assessment and the role of strategy, Journal of Electronic Imaging19(1): 011006.10.1117/1.3267105
Lee, S., Yoo, J., Kumar, Y. and Kim, S. (2009). Reduced energy-ratio measure for robust autofocusing in digital camera, IEEE Signal Processing Letters 16(2): 133-136.10.1109/LSP.2008.2008938
Li, X., He, M. and Roux, M. (2010). Multifocus image fusion based on redundant wavelet transform, IET Image Processing4(4): 283-293.10.1049/iet-ipr.2008.0259
Panetta, K., Wharton, E. and Agaian, S. (2008). Human visual system-based image enhancement and logarithmic contrast measure, IEEE Transactions on Systems, Man, and Cybernetics,B: Cybernetics 38(1): 174-188.10.1109/TSMCB.2007.90944018270089
Panetta, K., Zhou, Y., Agaian, S. and Wharton, E. (2011). Parameterized logarithmic framework for image enhancement, IEEE Transactions on Systems, Man, andCybernetics, B: Cybernetics 41(2): 460-472.10.1109/TSMCB.2010.205884720977986
Pinoli, J.C. and Debayle, J. (2007). Logarithmic adaptive neighborhood image processing (LANIP): Introduction, connections to human brightness perception, and application issues, EURASIP Journal on Advances inSignal Processing 036105(1), Article ID 36105, DOI: 10.1155/2007/36105.10.1155/2007/36105
Ponomarenko, N., Lukin, V., Zelensky, A., Egiazarian, K., Carli, M. and Battisti, F. (2009). A database for evaluation of full-reference visual quality assessment metrics, Advancesof Modern Radioelectronics 10(1): 30-45.
Pătras¸cu, V. and Voicu, I. (2000). An algebraical model for gray level images, Proceedings of the Exhibition on Optimizationof Electrical and Electronic Equipment, OPTIM,Brasov, Romania, pp. 809-812.
Ramanath, R., Snyder, W., Yoo, Y. and Drew, M. (2005). Color image processing pipeline: A general survey of digital still camera processing, IEEE Signal Processing Magazine22(1): 34-43.10.1109/MSP.2005.1407713
Stevens, J. and Stevens, S. (1963). Brightness functions: Effects of adaptation, Journal of the Optical Society of America53(3): 375-385.10.1364/JOSA.53.00037513984028
Subbarao, M. and Tyan, J. (1998). Selecting the optimal focus measure for autofocussing and depth-from-focus, IEEETransactions on Pattern Analysis and Machine Intelligence20(8): 864-870.10.1109/34.709612
Sun, Y., Duthaler, S. and Nelson, B. (2005). Autofocusing algorithm selection in computer microscopy, Proceedingsof the International Conference on Intelligent Robots andSystems, Edmonton, Canada, pp. 809-812.
Svahn, F. (1996). Tools and Methods to Obtaina Passive Autofocus System, Master’s thesis, Technical University of Linkoping, Linkoping, www.viktoria.se/˜fresva/documents/master_thesis.pdf.
Vertan, C., Oprea, A., Florea, C. and Florea, L. (2008). A pseudo-logarithmic framework for edge detection, in J.B. Talon, S. Bourennane, W. Philips, D. Popescu and P. Scheunders (Eds.), Advances in Computer Vision, Lecture Notes in Computer Science, Vol. 5259, Springer-Verlag, Juan-les-Pins, pp. 637-644.